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ABSTRACT Repetitive DNA is a periodic copolymer with the intrinsic property of exponential propagation to longer repeats.
Microgene polymerization reaction (MPR) is a model system in which a short nonrepetitive homo-duplex DNA evolves to multiple
repetitive products during heat-cool cycles. The mechanism underlying this process involves staggered annealing of complemen-
tary DNA strands of variable lengths and polymerase-mediated filling-in of the generated overhangs. MPR is considered here as
a process sharing common features with two polymerization types, chain-growth and step-growth, and significant distinctions from
both types were highlighted. The involved reaction stages were formulated and a kinetic model was derived and tested experimen-
tally. The model can quantitatively explain MPR propagation and be used as a good approximation for this phenomenon.
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INTRODUCTION

DNA is a natural irregular copolymer (1) comprised of four

types of basic monomer units, the nucleoside monophos-

phates, and contains essential genetic information (2). It is

built as two complementary strands in a double helical

mode that are associated by multiple hydrogen bonds accord-

ing to the Watson-Crick rules (3). The genetic information

passes to successive generations by accurate DNA duplica-

tion, accomplished via the template-driven process in which

nucleotides are assembled by polymerase on one strand thus

reproducing the complementary one (2).

Repetitive DNA (containing multiple oligonucleotide

repeats), an example of periodic copolymer (1), is ubiquitous

in genomes of eukaryotes (4). It plays an important role in

both maintaining chromosome integrity by telomeres (5)

and chromosome seggregation by centromeres (6). Expan-

sion of DNA repeats is associated with a variety of human

heredity diseases (7) and may reflect the mechanism under-

lying primordial molecular evolution of primitive DNA

sequences into complex genomes (8,9) that are known to

include numerous periodicities also encrypted in the encoded

proteins (10). The number of repeats in repetitive DNA is

prone to expand during replication because its constituent

strands slide over each other between the multiple comple-

mentary regions (11). Thermodynamically unfavorable

structures bulging out from DNA duplex that accompany

the strand sliding process can be stabilized by the inner base-

pairs which facilitate expansion (12). The genomic repeat-

expansion can be simulated in vitro with short repetitive

homo-huplexes (HD) and thermophilic DNA polymerases

under isothermal conditions (13–16). However, whereas

ensemble of various enzymes facilitates repeat-expansion
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in vivo, high temperature (near the melting temperature of

expanding DNA) is the facilitating factor in in vitro repeat-

expansion (15). Expansion with nonrepetitive HD was

observed in heat-cool cyclers and termed microgene poly-

merization reaction (MPR) (17). This process was success-

fully used to produce artificial proteins containing repetitive

motifs with useful properties (18–20) or to expose cryptic

activities of inactive proteins (21), but a deep understanding

of the underlying mechanisms is lacking.

To initiate the process, a nonrepetitive HD is duplicated

head-to-tail (17), thus generating a minimum repetitive unit

termed initial doublet (ID) (22) that is prone to the succeed-

ing expansion (Fig. 1 A). This rare process putatively

involves bridging of two molecules of nonrepetitive HD by

a third in a manner allowing the DNA polymerase to skip

the inter-template gap (22). The ID can be amplified by the

original HD before overall expansion starts ((23) and

Fig. 1 B). The expansion includes staggered annealing of

repetitive single strands of varied lengths followed by poly-

merization that fills in overhangs ((15) and Fig. 1 C).

The two MPR stages, initiation and propagation, are

likened here for the first time to chain-growth and step-

growth types of polymerization, respectively. Both stages

of the MPR are formulated; the derived kinetic model is

tested experimentally and discussed.

The model

The model considered, not limited by nucleotide concentra-

tions [dNTP], was devised with the following variables and

parameters:

Ai(N) and Bj(N) are the concentrations of forward and

reverse complementary DNA strands containing i
and j repeats, respectively, at a given MPR cycle N.

DAn(N) [¼ An(Nþ1) � An(N)] and DBn [¼ Bn(Nþ1)

�Bn(N)] are increments in An(N) and Bn(N), respec-

tively, after one cycle.

kI is the constant rate of MPR initiation.
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FIGURE 1 A model for MPR. (A)

Initiation. (B) The initiator (ID) and its

amplification. (C) The propagation of

ID in the first heat/cool cycle.

Propagation of the MPR 1867
kAmpl is the constant rate of ID amplification by the orig-

inal HD.

kPr is the constant rate of MPR repeat propagation per

PCR cycle, assumed to be independent of polymer

length (measured in repeat units n).

Initiation and amplification

The MPR is initiated when two HD combine to generate an

ID (Fig. 1 A) by an intricate mechanism (22). The modeled

propagation behavior is not sensitive to the exact mechanism

of initiation; for the sake of simplicity, a molecularity of

2 was assumed for each of complementary DNA strands.

The equation formulating this simplified process (Fig. 1 A)

is therefore:

2A1 þ 2B1 /
kI

A2 þ B2: (1)
The initiator (ID) composed of A2 and B2 can be amplified

(23) by the original HD (composing of A1 and B1) (Fig. 1 B)

according to:

A1 þ B2 /
kAmpl

A2 þ B2 and A2 þ B1 /
kAmpl

A2 þ B2: (2)

Amplification of ID rapidly brings the mass concentration of

the initiator to that of the original HD (Appendix A).

Assuming that kAmpl ¼ kPr, the amplification stage is kineti-

cally included in the following propagation stage.

Propagation (Fig. 1 C)

After generation of the initial doublet, the number of repeats

is envisioned as expanding according to

Ai þ Bj /
kPr

An þ Bn; (3)

where n%iþ j � 1 (explained in Appendix B).
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Equation 3 describes an irreversible bimolecular process

that can be expressed as:

DAnðNÞ ¼ kPr

X
i;j

finði; jÞAiðNÞBjðNÞ � kPrAnðNÞ

�
X

j

foutðjÞBjðNÞ
(4)

and

DBnðNÞ ¼ kPr

X
i;j

finði; jÞAiðNÞBjðNÞ � kPrBnðNÞ

�
X

j

foutðjÞAjðNÞ;
(5)

where fin(i, j), and fout(j) (Appendix B) are the probability

functions of the alignment between Ai and Bj that yield

inflow and outflow of An (or Bn), respectively. Note that

in this model both fin and fout do not depend on n. For

the sake of simplicity, all possible pairings between Ai

and Bj are assumed to have an equal chance to occur. The

summation is carried out over all (i, j) pairs that together

allow the generation of a product of length n. The following

set of difference equations is thus derived for DAn, consid-

ering also the doublet formation in the A2 inflow and

A1 outflow, Eq. 1:

For n ¼ 1,

DA1ðNÞ ¼ �kPrA1ðNÞ
XN
j¼ 2

ðj � 1ÞBjðNÞ
j

� kIA1ðNÞ2B1ðNÞ2:

(6)

For n ¼ 2,

DA2ðNÞ ¼ kPrA1ðNÞ
XN
i¼ 2

BiðNÞ
i
� kPrA2ðNÞ

�
XN
j¼ 2

ðj � 1ÞBjðNÞ
j þ 1

þ kIA1ðNÞ2B1ðNÞ2:
(7)

For n > 2,

DAnðNÞ ¼ kPr

Xn�1

i¼ 1

AiðNÞ
XN

j¼ n�iþ 1

BjðNÞ
i þ j � 1

� kPrAnðNÞ

�
XN
j¼ 2

ðj � 1ÞBjðNÞ
n þ j � 1

: (8)

A similar set of equations may be formulated for DBn. Since

the initial concentrations of the complementary DNA strands

dealt with here are identical, A1(0) ¼ B1(0), the propagation

kinetics of An and Bn are identical, hence Bi ¼ Ai.

To consider the enzymatic nature of MPR (with a finite

quantity of enzyme), the propagation must be specified so

that the aligned complex of the complementary strands

AiBj obtained in the process

Ai þ Bj 4
k1;k�1

AiBj: (9)
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associates with the enzyme (polymerase) (Enz) to form the

product

AiBj þ Enz4
k2;k�2

AiBjEnz /
k3

An þ Bn þ Enz: (10)

k1 and k-1 are rate constants of alignment and of melting,

respectively; k2 and k-2 are rate constants of association

and of dissociation, respectively, and k3 is the rate constant

of the enzyme-driven polymerization (turnover number) for

filling in (n–i) repeats.

After applying steady-state kinetics (see Appendix C),

MPR rate becomes

DAnðNÞ ¼
X

i;j

finði; jÞGðAi;Bj

�
�
X

i

foutðiÞGðAi;BnÞ;

(11)
where

G
�
Ai;Bj

�
¼ kPolEnztotAiðNÞBjðNÞ

Kapp
M þ AiðNÞBjðNÞ

;

Kapp
M ¼ Kapp�

M þ K�1
D KM;

Kapp�
M ¼ Enztotk3=k1;

(12)

Enztot is the total concentration of enzyme, KD ¼ k1/k-1

is the equilibrium constant for duplex formation, KM ¼
ðk�2 þ k3Þ=k2 is the Michaelis-Menten constant, and fin(i, j)
and fout(j) are the terms used in Eqs. 4 and 5. When

Kapp�
M [AiðNÞBjðNÞ, the kinetics reduces to a simple bimo-

lecular one as in Eq. 3, and kPr can be expressed by

kPr ¼ kPolEnztot=Kapp�
M ¼ k13; (13)

where 3 is defined in Appendix C.

Termination

MPR is never truly terminated, as happens in chain-growth-

type polymerization reactions; it is rather finished when the

nucleotides are depleted, as in step-growth-type reactions.

Extent of polymerization in MPR

The final polymer length in chain-growth-type reactions can be

calculated from the ‘‘kinetic chain length,’’ defined as the

number of monomer units consumed in the propagation stage

per active center produced in the initiation stage (24,25). In the

MPR, nucleotide concentration [dNTP] presented in the reac-

tion mixture determines the extent of propagation, whereas

that of the initial ID (equal to the nonrepetitive HD [HD]0)

represents active centers (Eq. 2 and Appendix A). Thus, in

MPR-produced multiple repetitive DNA, the final length

hni ¼ ð1=mÞ � ½dNTP�=½HD�0; (14)

where m is the number of nucleotides composing one

HD. Equation 14 is concordant with the experimental results

presented before (Fig. 2, A and C, in (22)).

Itsko et al.



MATERIALS AND METHODS

MPR conditions and length distribution
of products

A 55-ml reaction mixture contained 8.8 pmol (160 nM) of EVNA HD (22),

500 mM of each of the dNTPs, 10 mM KCl, 10 mM (NH4)2SO4, 20 mM

Tris-HCl (pH 8.8), 8 mM MgSO4, 0.1% Triton X-100 and 1 unit of Vent

DNA polymerase. The following conditions for T-Gradient Thermoblock

cycler (Biometra, Göttingen, Germany) were employed: 10 min at 94�C
(for strand separation) and 10 min at 72�C (around the melting temperature

Tm of the EVNA HD), then 30 cycles of 94�C for 10 sec and 72�C for 4 min.

Length distributions of the products were determined after 14–17 cycles. At

the midpoints (2 min) of five additional cycles, samples of 9 ml each were

withdrawn, electrophoresed on 0.8% agarose gels with 0.5 mg ml�1 of

Ethidium Bromide (EtBr), and photographed under UV illumination. The

fluorescence intensity of EtBr in the digitized images (reflecting the

product-length distributions) was analyzed using National Institutes of

Health Object Image software (National Institutes of Health, Bethesda,

MD)(http://rsb.info.nih.gov/nih-image/index.html). Each distribution of

MPR lengths (in number of repeats n) was normalized (Peak Normalization)

in two steps: it was divided by its maximum, and shifted by dividing each n

by nmax (n at the peak).

Simulation of the MPR kinetics

The set of difference equations (limited to 3000) describing kinetics of MPR

was solved numerically using Matlab 7 (MathWorks, Natrick, MA (http://

www.mathworks.com)). The rate of exponential MPR propagation

ln(1þE), where E is the amplification efficiency (the fraction of product

added per cycle), is determined by the value of the maximum of the 1st

derivative of ln(XN), where XN is the total amount of the MPR product

after cycle N (assuming a continuous process). The adjustment of parameters

is governed by the value of E (between 0.7–0.8) in both End-Point-Detec-

tion-PCR (Fig. 2 C) and Real-Time-PCR (22) and by the features of Vent

Propagation of the MPR
polymerase (26), KM ¼ 0.1 nM, Enztot ¼ 10 nM and k3¼16.7 s�1 for

dNTP addition. This last value translates into [16.7/42] ¼ 0.4 repeat sec�1

for addition of a 42 bp repetitive unit. Each distribution of MPR lengths

(both calculated and experimental) was normalized (Integral Normalization)

in two steps: it was divided by its area (integral), and shifted by dividing

each n by nmax (n at the peak).

RESULTS

Propagation kinetics of the MPR products

To follow DNA propagation, samples were removed from the

running MPR mixtures at consecutive cycles and analyzed:

DNA products extended in length (Fig. 2, A and B) and the

total amount rose exponentially (Fig. 2 C) with E of 0.75

(e0.5575-1) to maximal length determined by [HD] (Eq. 14

and (22)). Overlaying Peak-Normalized forms of the length

distributions (MPR conditions and length distribution of

products) reveals that they are essentially identical (Fig. 2 D).

Model’s predictions

The model discerns between different behaviors of the expo-

nential expansion in MPR, depending on Kapp�
M : the latter is

either much larger than hAiðNÞBjðNÞi (large Kapp�
M ) or not

(small Kapp�
M ). In both cases, it predicts a constant rate of total

product-propagation (provided an unlimited supply of

dNTP), but whereas the accumulation is exponential

throughout when Kapp�
M [ hAiðNÞBjðNÞi, it is finally re-

placed by a stationary phase in the alternative (small Kapp�
M )

case (Fig. 3 A): the decrease in rate is due to an ever-increasing

1869
FIGURE 2 Propagation kinetics and distributions of

MPR products. (A) Consecutive samples run on 0.8%

agarose gel: M, DNA size markers; lane 1, cycle 16; lane 2,

cycle 17; lane 3, cycle 18; lane 4, cycle 19; lane 5, cycle 20.

(B) Scanned and digitized samples of cycles 17–20 (from

A). (C) Total (integral of corresponding distributions) fluo-

rescence intensity (DNA) in lanes 2–5 (cycles 17–20; from

A). (D) Juxtaposed, peak normalized (MPR conditions and

length distribution of products) distributions (from B).
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FIGURE 3 Matlab simulations. (A) Kinetics of total MPR

product: dashed line, large Kapp�
M case [kPol ¼ 96 repeats

cycle�1 (k3 ¼ 0.4 repeat sec�1), Kapp�
M ¼ 8�104 nM2,

kI¼1.5�10�15 nM�3 sec�1; E ¼ 0.728]; full line, small

Kapp�
M case [kPol ¼ 0.09 repeat cycle�1 (k3 ¼ 3.75�10�4

repeat sec�1), Kapp�
M ¼ 1 nM2, kI ¼ 10�24 nM�3 sec�1;

E ¼ 0.735]. Final distributions at cycles 14–23: with large

Kapp�
M (B) and small Kapp�

M (C) values.
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value of (KD)�1 (reflecting gradual increase in Tm of the ex-

tending product) that finally exceeds Kapp�
M (Eqs. 12 and

C13). In addition, the value of the distribution maxima during

the exponential phase is almost a constant according to the

former case (Fig. 3 B), whereas it increases to a constant value

at the stationary phase according to the latter (Fig. 3 C). The

fact that the intensity at the distributions’ peak rises (Fig. 2

B) is consistent with the small Kapp�
M case only.

Comparing the experimental results
with the model

The experimental results (Fig. 2 B) and the model’s predic-

tions (Fig. 3 C) resemble each other in that both display

bimodal distributions. However, the ratios between the areas

under the first (HD) peak to that of the main peak in each of

the model distributions for early propagation cycles are

much higher than those in the experimental ones. This incon-

sistency is considered in the Discussion Section, but super-

position of the two by the Integral Normalization procedure

(see Simulation of the MPR kinetics section), yielding

Fig. 4 A, was performed without the theoretical HD peak.

DISCUSSION

The study presented here is the first attempt, to our knowledge,

to describe the empiric phenomenon of MPR in terms of poly-

mer chemistry. The model seems to explain the major quanti-

tative aspects of MPR propagation and can be used to better

approximate minor details of this phenomenon. Controlling

the extent of MPR propagation via [dNTP] and [HD] allows

Biophysical Journal 96(5) 1866–1874
a rational design of reaction mixtures to obtain higher yields

of desirable bioengineered artificial polypeptides.

MPR as a chemical polymerization process

The MPR is kinetically divided into two stages, initiation

(enhanced by amplification) and propagation (Fig. 1). The

former is slower because the initiator (ID) is generated through

an unstable nucleation complex (22,23). However, whereas in

common chain-growth polymerization reactions that are

limited by unstable intermediates (free radicals or activated

precursors in chemical (24) or biological (27–29) macromol-

ecules, respectively), the initiation of MPR (after a transient

period) is not rate limiting because ID is stable. The rate-

limiting stage here is propagation, the mechanism of which

shares common features with step-growth polymerization

processes (24,25): each extension step, Eq. 3, occurs between

molecules containing any number of repeats, which gradually

increases with cycles (Fig. 2). The common step-growth poly-

merization processes proceeding by condensation is of

2nd-order kinetics resulting in a linear growth of the average

polymer molecular weight (25). The MPR, on the other hand,

is an autocatalytic process resulting in an exponential growth

of the number of repeats per polymer molecule (Fig. 2).

Exponential rise in the average number of repeats per

molecule hniN during propagation is justified as follows. In

the extension reaction (Eq. 3), two molecules of lengths n1

and n2 (i.e., n1 % n2) yield two molecules with lengths in

the range between n1þ1 and n1þn2�1. Assuming that the

population of such repetitive products is uniformly dis-

tributed with a common difference of one repeat unit



(Appendix B), the average length of the product hni ¼
[(n1þ1)þ(n1þn2�1)]/2 ¼ n1 þ n2/2. Averaging over all

possible reactions of this sort yields

hniNþ 1¼ hn1iN þhn2iN=2: (15)

Since hn1iN ¼ hn2iN ¼ hniN (belonging to the same distribu-

tion), the average length of the polymer should increase by

a factor of 1.5 at each cycle hniNþ1 ¼ 3hniN=2, corresponding

to E ¼ 0.5. This propagation scheme, Eq. 3, remains unaf-

fected by assuming that the reacting molecules are duplexes

rather than single strands, as is the case in this treatise.

FIGURE 4 Experimental versus model distributions. (A) Juxtaposition of

the small Kapp�

M case model (solid lines for cycles 14–23) with four (cycles

17–20) experimental distributions (crosses, open circles, open squares,

and open diamonds, respectively), each integrally normalized (see Simula-

tion of the MPR kinetics section). The shaded area is expanded in (B):

The model (solid symbols for cycles 14–16) and corresponding experimental

(open symbols) distributions, excluding cycle No. 17.

Propagation of the MPR
The experimental value of the amplification efficiency E
(Fig. 2 C and (22)) exceeds 0.5, Eq. 15, implying (see Eq.

3) an overlap between two reacting molecules mainly at their

30 terminal units rather than uniformly along their whole

lengths (as in Appendix B). Unwinding of the reacting

duplexes by strand displacement and their intrusion into

each other, as does Vent polymerase (26), can explain this

high E: shorter overlaps would be favored because stereo

hindrance rises with deeper intrusions (see Fig. 6 in (15)).

As a consequence, the average length of the product mole-

cules is larger, resulting in E > 0.5. Moreover, each 4 min

cycle at around the Tm used here is likely to allow more

than a single extension step thus further enlarging the

average length. Larger E values would thus be anticipated

under longer heat-cool MPR cycles.

Adjustment of theoretical reaction-constants

The range of propagation efficiency E obtained here (0.7–0.8)

with k3¼ 0.4 repeat sec�1 (see Simulation of the MPR kinetics

section) and kPol¼ 240 (sec cycle�1)�k3¼ 96 repeats cycle�1

(Appendix C) requires Kapp�
M to be ~105 nM2

([hAiðNÞBjðNÞi; Eqs. 12 and 13), reducing the Michaelis-

Menten kinetics, Eqs. 9–11, to a simple bimolecular one,

Eq. 3. Thus, the rise of the maximum value of the main

peak (Fig. 3 C) would be eliminated (Fig. 3 B), which is totally

inconsistent with the experimental results (Fig. 2 B),

precluding the validity of this value of k3 (26). Exclusion of

the large Kapp�
M case (see Model’s predictions section) is

further supported by a), comparing E values that it predicts

at different [HD] with experimental data (Table 1) and b),

deriving a low value for k1 from Eq. 12 (5�104 M�1 sec�1),

far below the diffusion-controlled limit (kD of between

107-108 M�1 sec�1) derived from the Debye-Smoluchowski

equation (30). Since the activation energy involved in hybrid-

ization between complementary regions is low, the overall

reaction rate during an MPR cycle would be governed by the

rate at which DNA molecules diffuse through the medium (25).

The experimental rise in peaks (Fig. 2 B) compels (Fig. 3 C)

the DNA alignment constant k1 and the enzyme turnover

number k3 to be equal to 3.75�106 M�1 sec�1 and

TABLE 1 Calculated E values

nMy Experimentalz large Kapp�

M
x small Kapp�

M
{

320 0.80 5 0.05 1.92 0.6

160 0.80 5 0.04 0.71 0.7

80 0.68 5 0.16 0.31 0.9

40 0.57 5 0.09 0.14 1.0

yInitial concentration of original homo-duplexes ([HD]0).
zGleaned from (22).
xCalculated with the following parameters: kPol ¼ 96 cycle�1 (k3 ¼ 0.4

repeat sec�1), Kapp�

M ¼ 8�104 nM2, kI ¼ 1.5�10�15 nM-3sec�1, Enztot ¼
10 nM, KM ¼ 0.1 nM.
{Calculated with the following parameters: kPol¼0.09 cycle�1

(k3 ¼ 3.75�10�4 repeat sec�1), Kapp�

M ¼ 1 nM2, kI ¼ 10�24 nM�3 sec�1,

Enztot ¼ 10 nM, KM ¼ 0.1 nM.
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3.75�10�4 repeat sec�1, respectively. While k1 is sufficiently

close to kD, the value of k3 is 103-fold lower than that calcu-

lated value (0.4 repeat sec�1) from existing data with Vent

(26) (see also in the Simulation of the MPR kinetics section).

This means that the average number of repeats added per cycle

by an enzyme molecule is ~1000 (see Eq. 10).

Similarities and disparities between the model
and experimental results

There is a satisfactory resemblance between the model’s

predictions and the results (Fig. 4) thus supporting it: a),

both display bimodal distributions; b), values of all three

HD peaks agree; c), three of the experimental length distribu-

tions (2nd–4th) overlap the first three of the model at their

main peaks. To enhance resolution and comprehension of

this issue, the lower end of the integrally normalized distribu-

tion curves (shaded area in Fig. 4 A) was expanded with

different scales (Fig. 4 B).

Three discrepancies between the derived model and the

experimental distributions are evident but can be resolved

by testable explanations (Fig. 4): a), the overlap between the

first two product-distributions after initiation of MPR is ex-

plained by the preceding amplification ((23) and Fig. 1 B).

The kinetics of this stage that corresponds to early MPR cycles

is different than that of the net propagation, depending on the

difference between kAmpl and kPr. Since the product of the first

cycle (crosses in Fig. 4) includes also the parallel amplifica-

tion stage, it should be excluded from the comparison between

the experimental and the modeled MPR propagation distribu-

tions. b), the very low intensities of the HD peaks in the exper-

imental distributions can be explained by the leaching of EtBr

from DNA during electrophoresis to the cathode during run on

gel (Fig. 2 B). Shorter DNA species such as HD are more

vulnerable to EtBr leaching and consequently to an underes-

timate of their real amount. The same reasoning is valid for

the shortest repeats in all distributions thereby explaining

the disparity at their left hand part. This disparity decreases

as the length increases, validating the assertion of the vulner-

ability of EtBr leaching. c), the experimental distributions are

skewed to longer lengths whereas the model predicts negative

skewness. This means that for every (Ai, Bj) involved in the

extension step (see Eqs. 3 and 10) the generated product is

much shorter than the expected maximum ((iþj-1) in

Appendix B). This is consistent with lower processivity of

the Vent polymerase (26).

APPENDIX A: ASYMPTOTICS

For the sake of simplicity of the consequent evaluation, initiation and ampli-

fication stages are formulated without dissecting each HD into the single

strands composing it.

Initiation: 2HD /
kI

D; Amplification: HDþ D/
kAmpl

2D, where HD is the

original nonrepetitive HD and D is the head-tail doublet of HD. Thus, the

rate of D accumulation is: d½D�=dt ¼ kI ½HD�2 þ kAmpl½HD ½D�� . Expressing

[HD] via [D], the equation is rearranged to: d½D =dt ¼�
kIð½HD�0 � ½D�Þ

2 þ kAmplð½HD�0 � ½D Þ½D�� , where [HD]0 is the initial

Biophysical Journal 96(5) 1866–1874
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concentration of HD. Integration of this equation yields:

½D� ¼ kI ½HD�0ðekAmpl½HD�0 t � 1Þ=ðkAmpl � kI þ kIe
kAmpl ½HD�0 tÞ. Since kAmpl

[ kI, this expression describes exponential increase in [D] that asymptot-

ically approaches the value of [HD]0.

APPENDIX B

Inflow

The length n of the strand generated by reactants Ai and Bi is at most

(i þ j � 1), since at least one repeat is always hidden in the overlap paired

region:

The value (i þ j - 1) is also the total number of overlap types between two

strands:

Due to the fact that chain growth continues from 30 termini, only one of

the above alignments leads to generation of An product of desired length n,

whereas alignments numbers 4–6 yield no product at all. From the above

alignments, only number 1 generates A6. Correspondingly, the probability

of the specific alignment (fin(i, j)) ¼ (i þ j - 1)-1.

Outflow

The outflow of An is put into effect in longer products only because the

model ignores exonucleolytic activity of DNA polymerase. Since at least

one repeat unit in Bj must be 50-overhanged to allow lengthening of

An, (j � 1), different alignments of Bj with An out of a total (n þ j � 1)

(see the previous paragraph) lead An to extend to a group of longer lengths,

fout(j) ¼ (j � 1) / (n þ j � 1).

APPENDIX C: ANALYSIS OF THE KINETIC
EQUATIONS

All the processes formulated below occur in the same cycle, hence cycle

number index is omitted from concentration symbols and they are put into

square brackets.

The mathematical description of the kinetic Eqs 9–11 may be written

d
�
AiBj

�
dt

¼ k1½Ai�
�
Bj

�
� k�1

�
AiBj

�
� k2

�
AiBj

�
� ½Enz� þ k�2

�
AiBjEnz

�
; ðC1Þ
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d
�
AiBjEnz

�
dt

¼ k2

�
AiBj

�
½Enz� � k�2

�
AiBjEnz

�
� k3

�
AiBjEnz

�
; (C2)

and

d
�
Anði;jÞ

�
dt

¼ k3

�
AiBjEnz

�
; (C3)

where An(i, j) is An generated from the given i and j and k3 is the turnover

number of the enzyme.

The rate of generation of intermediates such as [AiBj] and [AiBjEnz] is

taken as close to zero according to the assumption of steady-state kinetics

for them (25). Therefore:

k1½Ai�
�
Bj

�
� k�1

�
AiBj

�
� k2

�
AiBj

�
½Enz�

þ k�2

�
AiBjEnz

�
¼ 0; ðC4Þ

and

k2

�
AiBj

�
½Enz� � k�2

�
AiBjEnz

�
� k3

�
AiBjEnz

�
¼ 0:

(C5)

From Eq. C5:

ðk�2 þ k3Þ
�
AiBjEnz

�
¼ k2

�
AiBj

�
½Enz�; (C6)

and

�
AiBj

�
¼
�
AiBjEnz

�
ðk�2 þ k3Þ=k2

½Enz� : (C7)

[Enz] can be expressed as

½Enztot� �
�
AiBjEnz

�
; (C8)

so that

�
AiBj

�
¼
�
AiBjEnz

�
ðk�2 þ k3Þ=k2

½Enztot� �
�
AiBjEnz

� : (C9)

Inserting Eqs. C8 and C9 into Eq. C4 yields the following after simplifica-

tion:

k3

�
AiBjEnz

�2�a �
�
AiBjEnz

�
þ b ¼ 0; (C10)

where

a ¼ k1½Ai�
�
Bj

�
þ k3½Enztot� þ

k�1

k2

ðk�2 þ k3Þ and

b ¼ k1½Ai�
�
Bj

�
½Enztot�:

Solving this equation produces two roots:�
AiBjEnz

�
1;2
¼ 0:5

�
a 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4bk3

p �
=k3: (C11)

The only root satisfying the condition ½Enztot� � ½AiBjEnz R0� , that the

amount of the enzyme joined to DNA should be smaller than its

total amount, is�
AiBjEnz

�
¼ 0:5

�
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4bk3

p �
=k3: (C12)

The melting equilibrium constant KD is concentration-dependent because

linear nucleic acid duplexes are formed from two strands.

Propagation of the MPR
KD ¼ 2qext=
�
ð1� qextÞ2CT

�
, where qext is the fraction of strands with at

least one intact basepair and CT is the total concentration of strands forming

DNA duplex (31). qext at the melting temperature is equal to 0.5, so KD at

this condition is equal to 4=CT . Since MPR products are repetitive DNA

containing basic primer motive, CT may be evaluated as the total concentra-

tion of MPR repeats that increases with cycles:

K�1
D ¼ 0:25

XN
i¼ 1

ið½AiðNÞ� þ ½BiðNÞ�Þ: (C13)

Under the conditions of the used [HD] (Table 1) and values of KM

(0.1 nM), k3 (0.4 repeat sec�1) and [Enztot] (10 nM) (26),

a2[4bk3 or 4bk3=a2 � 1: (C14)

We assume that this inequality stays true along the process and hence

Eq. C12 may be simplified as follows:

�
AiBjEnz

�
¼ 0:5a

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4bk3

a2

r !
=k3z0:5a

�
	

1�
	

1� 2bk3

a2




=k3 ¼

b

a
ðC15Þ

because
ffiffiffiffiffiffiffiffiffiffiffi
1� x
p

z1� 0:5x as x approaches to 0.

�
AiBjEnz

�
¼

½Enztot�½Ai�
�
Bj

�
Enztotk3=k1 þ K�1

D KM þ ½Ai�
�
Bj

� (C16)

so that

dAnði;jÞ

dt
¼

k3½Enztot�½Ai�
�
Bj

�
Enztotk3=k1 þ K�1

D KM þ ½Ai�
�
Bj

�: (C17)

Assuming t¼N3, where N is the number of cycles and 3 is the cycle period,

yields

DAnði;jÞ ¼
kPol½Enztot�½Ai�

�
Bj

�
Enztotk3=k1 þ K�1

D KM þ ½Ai�
�
Bj

�; (C18)

where kPol ¼ k33, and 3 ¼ 240 sec cycle�1.
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