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Synergy between Cyt1Aa and Cry Toxins

Bti is highly efficient and specific against mosquito and black 
fly larvae.3 Most importantly, no resistance has been observed in 
nature after Ca. 30 years of extensive use worldwide.4 Different 
activities and modes of action of its four major toxins form a 
lethal combination against larvae of all mosquito species tested.5 
Resistance is not selected for due to synergy among Bti compo-
nents, mostly the low-toxic, non-specific Cyt1Aa. High synergy 
levels affected by Cyt1Aa were observed by Crickmore6 and 
Wirth,7 the latter also demonstrated that Cyt1Aa prevented selec-
tion of resistant mosquitoes.8

The question raised was whether a combination of anti-Lep-
idopteran toxins with Cyt1Aa imitates this rare advantage of 
Bti. To partially answer this question, two genes were cloned for 
expression in Escherichia coli, cry1Ac (from Bt ssp. kurstaki) and 
cry1Ca (from Bt ssp. aizawai), with and without cyt1Aa, and tested 
against three pests, Helicoverpa armigera, Pectinophora gossypiella 
and Spodoptera littoralis.9 Co-expression of all three genes, and 
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with p20 encoding an accessory protein (for reasons beyond the 
scope of this report), indeed synergized toxicity against H. armi-
gera but antagonized it against P. gossypiella. Moreover, very high 
toxicity against S. littoralis and huge synergy value between the 
two tested Cry’s were found without Cyt1Aa and P20. Thus, one 
cannot predict which gene combination would be useful in pest 
control, and each idea must experimentally be tested separately.

Cyanobacteria to Deliver Bti Toxins against 
Mosquitoes

Several disadvantages hamper the use of Bti: in nature, it does 
not proliferate whereas the toxins disappear by sinking and 
adsorption to silt particles and are inactivated by sunlight.3 To 
achieve a real biological control, the vector must multiply in the 
same niche as its target. Photo-synthetic cyanobacteria have sev-
eral additional features that render them excellent candidates to 
control mosquito larvae:10 their floating capacity avoids sinking 
and adsorption to silt hence keeps them in the same zone (upper 
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Cyt1Aa synergizes the Cry’s in Anabaena as well,14 and the toxic 
activity is protected from silt in the laboratory and from sunlight 
inactivation in semi-field conditions. They were about 7-fold 
more effective than a commercial preparation of Bti itself.18 One 
of our future plans, adding the last major Cry gene cry4Ba to this 
battery, would improve this bio-control agent.

Environmental Considerations

For various reasons, field tests to release living genetically engineered 
microorganisms are not yet allowed worldwide. One justifiable rea-
son that has been demanded by The European Council Directive,19 
namely the use of markers that confer resistance to “clinically used” 
antibiotics must be phased out! Drug resistance markers must be 
removed from transgenic clones before they are even to be consid-
ered for release in nature. Release to the environment of Anabaena 
transgenic clones such as ours that were derived by selection of 
antibiotic resistance markers requires marker-free strains. The most 
elegant way to achieve this goal is by site-specific recombination.

The site-specific recombination system of the l-like coliphage 
HK022, which has been implemented in Arapidopsis plants20 
and in human cells,21 is designed to remove these genes from 
the Anabaena genome. The responsible enzyme, Integrase (Int) 

level of water bodies) and available to the larvae. Cyanobacteria 
are amenable to recombinant DNA technology, and their pig-
ments11 are likely to protect the toxins from sunlight inactivation.

Our attempts to circumvent the disadvantages of Bti by using 
the nitrogen-fixing, filamentous cyanobacterium Anabaena PCC 
7120 were quite successful.12-14 The first condition for cyanobac-
teria to control mosquito larvae, feeding them, was demonstrated 
(Fig. 1): the closely related species Anabaena siamensis is ingested 
and digested by larvae of Aedes aegypti, similarly to Anabaena 
PCC 7120 (not shown).

In cooperation with the Sanger Institute, we sequenced 
pBtoxis,15 the 128 kb plasmid of Bti that harbors all the genetic 
information necessary for mosquito larvicidal activity.16 All 15 
possible combinations (= 24 - 1) of four genes, three encoding 
the toxins Cry4Aa, Cry11Aa and Cyt1Aa and the accessory P20, 
were cloned for expression in E. coli.17 This protocol of cloning 
gene combinations under identical promoters allowed compari-
sons of toxicities and synergy levels among the toxins in vivo. 
Cyt1Aa was indeed found to synergize Cry4Aa and Cry11Aa 
hence is anticipated to reduce the likelihood of selection for resis-
tance in the target organisms.8

The most toxic combinations were appropriately moved into 
Anabaena PCC 7120 and confirmed our working hypotheses: 

Figure 1. Anabaena siamensis is ingested and digested by Aedes aegypti larvae. A second instar larva of A. aegypti ingests (A) Anabaena siamensis (B), 
excreting from its anus, (C) leaving behind digested filaments and intact heterocysts (D).
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use intensively organophosphates or carbamates onto the foli-
age or the stem and the surrounding soil.34,35 The populations 
of Capnodis increase in areas where they had been considered 
minor pests few decades ago. Development of environmentally 
friendly measures to control them is thus highly important.

As the first step to achieve this goal, an artificial diet was 
recently developed,36 and is currently exploited to screen Bt strains 
for toxicity against them. Of a battery of 215 field isolates, 38 that 
were found to include at least one gene encoding anti-Coleopteran 
Cry toxin7 are being bioassayed. The genes from the best isolates 
will be cloned for expression in the roots of the target trees.

Concluding Remarks

Use of environment friendly and cost effective alternatives to 
chemical pesticides improves health and safety, enhances crop 
output and lowers levels of pollution. Toxins of entomopatho-
genic bacteria have become leading bio-pesticides to control pop-
ulations of insect pests and vectors transmitting severe human 
diseases. Implementation of innovative ideas to exploit molecular 
methods and interactions between organisms, together with con-
sidering various ecological aspects, is likely to become hallmark 
of future generations.
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catalyzes site-specific integration and excision of DNA provided 
that the recombination target sites attP + attB or attR + attL, 
respectively, are available. In human cells Int is active on the 
extra-chromosomal level with plasmids22 as well as on the chro-
mosomal level,21 in both cis and trans orientations.

Expression of lacZ in Anabaena PCC 7120 was designed to 
demonstrate the Int-catalyzed excisive recombination reaction, 
whether located on a plasmid or on the chromosome.23 A plasmid 
pMVO carrying the four Bti toxin genes was constructed such 
that its antibiotic resistance marker nptII can be excised with Int24 
(Fig. 2). This plasmid was introduced into the Anabaena chro-
mosome by homologous recombination after conjugation using 
neomycin selection.24 The excision of nptII along with additional 
unnecessary DNA (luxAB) out of the resultant mosquito larvici-
dal transgenic Anabaena is underway.

How can Maize Control Mosquitoes? 

Pollen of maize (Zea mays) provide complete food source for 
Anopheles arabiensis larvae, which is the reason for sharp rise in 
malaria prevalence in Africa during blooming seasons.25 Vast 
quantities of maize pollen accumulate on the surface of nearby 
puddles, enhancing development of mosquito larvae in breeding 
sites that lie within 50–60 meters range.26 Moreover, maize pollen 
is phagostimulant for mosquito larvae.27 Maize is therefore engi-
neered to express combination of genes for mosquito larvicidal 
toxins in the pollen. The combinations to be exploited are of Bti 
toxin genes together with tmfA, encoding the peptide hormone 
TMOF (Trypsin Modulating Oostatic Hormone) of A. aegypti.28 
This hormone, an unblocked decapeptide (YDPAPPPPPP) that 
exerts its effects against a relatively narrow range of targets,29 
starves the larvae to death by blocking translation of trypsin-like 
mRNA in the midgut.28 Since starved larvae are 6–35-fold more 
sensitive to Bti toxins than are fed larvae,30 TMOF is anticipated 
to synergize the Bti toxins in suppressing larval densities around 
fields of maize genetically modified appropriately. Continuous 
anti-vector coverage for an entire village is likely to be achieved 
with a few patches of transgenic maize producing larvicidal pol-
len. Transformed plantlets with cry11Aa-tmfA, cry4Aa-tmfA and 
cyt1Aa-tmfA have been generated, moved to the greenhouse (to 
be published elsewhere), and additional gene combinations are 
currently being prepared.

Anti-Coleopteran Active Genes to Control Capnodis 
ssp. 

Our recently-embarked project is to discover Bt genes that 
will control a pest prevalent in countries surrounding the 
Mediterranean. Three ssp. of the flat-headed borer Capnodis, 
Capnodis tenebrionis, C. carbonaria and C. cariosa, kill trees of 
cultivated stone-fruits.31 The larvae destroy the root systems 
of almond, apricot, cherry, nectarine, peach, plum and pista-
chio. Tree mortality and economic losses are reported from all 
Southern-European and Mediterranean countries.32 Since natu-
ral occurring arthropod enemies of Capnodis are rare,33 growers 

Figure 2. plasmid pMVO, designed for excision by Int via site-specific 
recombination between the attR and attL sites. the 23.4 kb pMVO 
carries the four Bti toxin genes (cry4A, cry11A, p20 [twice] and cyt1A) 
and antibiotic resistance marker nptII. two promoters were introduced, 
PpsbA (of the photosystem II’s D1) and PA1 (t7 phage early promoter) at 
the denoted positions. nptII, neomycin/kanamycin resistance gene; 
ORF all3924, a pCR amplified sequence24 encoding a probable penicillin 
amidase (see in http://bacteria.kazusa.or.jp/cyanobase/index.html).
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