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Abstract. An alternative PCR analysis to screen forcry7 genes is proposed, based on the five conserved
blocks of amino acids ofBacillus thuringiensistoxins and their encoding DNA sequences. A complete
set of five primers was constructed, four direct and one reverse, yielding four specific amplicons.
Modified profiles can identify newcry genes.

Subspecies of the Gram-positive, aerobic, endospore-
forming bacteriumBacillus thuringiensisare recognized
by their ability to produce during sporulation large quan-
tities of insect larvicidal proteins (d-endotoxins) aggre-
gated in parasporal crystalline bodies [e.g., 6, 20]. The
high potencies and specificities ofB. thuringiensisinsec-
ticidal crystal (Cry) proteins have spurred their use as
natural pest control agents in agriculture, forestry, and
human health [24, 29]. Known toxins kill subsets of
insects among the Lepidoptera, Coleoptera, Diptera, and
nematodes. The related toxins are classified by their
degree of amino acid homology [1, 11].

Five highly conserved blocks exist in the toxic core
of most known Cry protoxins, which are important for
their activities and specificities [16]. They are arranged
in three distinct domains (I–III, from N- to C-termini)
[15, 23]. Block 1, encompassing the central helixa5 of
domain I, has been implicated in pore formation, a role
that might explain its highly conserved nature [13].
Block 2 includes the C-terminal half of helixa6 and all
of a7 of domain I, and the firstb-strand of domain II.
Helix a7 serves as a binding sensor to initiate the struc-
tural rearrangement of the pore-forming domain [12, 13].
Residues within block 2 are involved in formation of salt
bridges, which could be considerable, in conformational
changes upon binding of the toxin to receptor or for
maintaining the protein in globular form [29]. Block 3
contains the lastb-strand of domain II and the N-termi-
nal segment of domain III, the latter forming the inter-
face with domains I and II [15]. Block 4 corresponds to

the secondb-strand of domain III that affects the struc-
tural integrity of the protein, oligomeric aggregation, and
the appropriate function of the ion channels [29, 30, 33].
The highly conserved block 5 in domain III is at the
C-terminus of the activated toxin and is another major
element that stabilizes the mature toxin [19, 27, 34].

Polymerase Chain Reaction (PCR) requires minute
amounts of DNA and allows quick, simultaneous screen-
ing of many samples. This technique has been exploited
to identify cry genes ofB. thuringiensis, detect new such
genes, and subsequently predict their insecticidal activi-
ties [2–5, 7–10, 14, 17, 18, 21, 25]. Extensive screening
programs have considerably expanded the host range of
strains available for pest control [2, 5].

The procedure used here is based on homologies to
the five conserved blocks of the Cry proteins. As an
example, we chosecry7 andcry8, which are promising
for effective control and resistance management of ag-
ronomically important coleopteran species [22, 26, 28,
31, 32]. Threecry7 and threecry8 genes are currently
known:cry7Aa, cry7Ab1, andcry7Ab2in B. thuringien-
sis subsp.galleriae [22], dakotaHD-511, andkumamo-
toensisHD-867 [1], respectively;cry8Aaandcry8Ba in
B. thuringiensissubsp.kumamotoensis[1]; and cry8Ca,
in subsp.japonensis[28, 31]. The four direct primers
were designed to amplify four distinct amplicons with
the single reverse primer and create a fingerprint specific
to cry7A(Fig. 1A). A novel gene may thus be discovered
by altered profiles such as different amplicon(s) size(s)
(modified interval(s) between blocks) or absence of at
least one amplicon (homology variation in a conserved
block).Correspondence to:E. Ben-Dov;email: ariehz@bgumail.bgu.ac.il
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Materials and Methods

B. thuringiensis strains. B. thuringiensissubsp.indiana HD-521,B.
thuringiensissubsp.tochigiensisHD-868, B. thuringiensissubsp.da-
kotaHD-511, andB. thuringiensissubsp.kumamotoensisHD-867 were
kindly supplied by D. R. Zeigler (Bacillus Genetic Stock Center,
Columbus, Ohio).B. thuringiensisfield strains were obtained from soil
and insect cadavers, were isolated as described previously [2], and were
selected for appearance of parasporal inclusions by phase-contrast
microscopy.

Oligonucleotide primers and PCR analysis. Primer sequences,
match and mismatch positions in eachcry7, and expected sizes of their
amplicons are presented in Table 1. They were selected from regions
coding for the five conserved blocks to amplify specific fragments
using Amplify 1.0 program (Bill Engels, University of Wisconsin,
Madison, USA). A partial set of primers to detect the conserved blocks
3 and 5 specific for the three knowncry8 was similarly examined as
well (Fig. 1B); their sequences, match positions, and expected sizes of
resultant amplicons are presented in Table 2.

DNA templates, extracted fromB. thuringiensisstrains as de-
scribed previously [2], served in the amplification reactions by a DNA
MiniCycler (MJ Research, Inc., Watertown, MA, USA). Reactions (30
cycles each) were carried out in 25ml: 1 ml of template DNA was
mixed with reaction buffer, 250mM of each dNTP, 0.2–0.5mM of
each primer, and 0.5 U ofTaqDNA Polymerase (Appligene). Template

DNA was denatured (1 min at 94°C) and annealed to primers (45 s at
50 to 54°C), and extensions of PCR products were achieved at 72°C for
30–90 s. Each experiment was accompanied by a negative (without
DNA template) control. PCR amplicons of predicted sizes were easily
identified by electrophoresis on 1% agarose gels.

Results and Discussion

PCR analysis forcry7 genes was performed on fourB.
thuringiensisstandard strains, as well as on 27B. thu-
ringiensis field isolates, which have previously been
found positive to a pair of universal primers (Un7,8 for
cry7 andcry8 groups) [2]. Among the standard strains,
only B. thuringiensissubsp.dakotaHD-511 andB. thu-
ringiensissubsp.kumamotoensisHD-867, known to har-
bor cry7Ab1and cry7Ab2, respectively [1], yielded the
four amplicons (Fig. 2) of the predicted sizes with the set
of primers (Table 1). None of the 27 field-collected
isolates tested yielded amplicons with this same set of
primers. This result could be a consequence of an unfor-
tunate mismatch of the reverse primer (even of the ter-
minal 39-nucleotide), but these strains may serve as a
potential pool for new genes from thecry7 and cry8
groups. Indeed, further screening for the presence of
threecry8genes by their respective pairs for blocks 3 and
5 (Table 2) detected one that yielded an amplicon spe-
cific to cry8Ba. This same field-collected strain must be
novel because it did not react with acry8Ba-specific pair
of primers [2].

A new gene will be detected by propagating a spe-
cific amplicon(s) differing from the standard pattern for
cry7 (Fig. 1A). A necessary condition for defining a new
gene is either different interval(s) among the five con-
served blocks, as found incry8 (Fig 1B) and in othercry
genes [28, 29], or homology variation in conserved
blocks. This method can be practical for a distinctcry
group or for several groups by sets of degenerated prim-
ers.

Three additional conserved blocks have recently
been identified in the C-termini of Cry protoxins [29].
They may be exploited for extended PCR screening of
cry genes, alone or together with the original five con-
served blocks. For example, a set of four primer pairs
each for a tandem pair of the eight conserved blocks can
be designed and used in a mixture for a single reaction.
This reaction will yield four major amplicons from a
standardcry created by matching the respective primers
to pairs of adjacent blocks, and several additional minor
amplicons between primers of distinct pairs, creating
together a fingerprint specific to eachcry.
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amplicon.
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