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Abstract

A model of bacteria and phage survival is developed based on the idea of shielding by bacterial debris in the system. This model is

mathematically formulated by a set of four nonlinear difference equations for susceptible bacteria, contaminated bacteria, bacterial

debris and phages. Simulation results show the possibility of survival, and domains of existence of stable and unstable solutions

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Multiplication of virulent bacteriophages (bacterial
viruses) consists of three steps (Adams, 1959; Hayes,
1968). In the first, a phage attaches itself to a receptor on
the bacterial envelope and injects its DNA into the cell,
thus stopping its autonomous functioning. The second
step consists of a so-called latent period, during which
the phage multiplies inside the infected bacterium.
Finally, cell lysis releases into the system newly created
phages, leaving behind a dead bacterium, or debris
(Kutter et al., 1994). The burst size (number of phages
released from each cell) is usually of the order of 10–100,
depending on the physiological conditions of the host
bacterium (Hadas et al., 1997; Rabinovitch et al.,
1999a). This process recurs along a sequence of
‘‘generations’’. Following a finite number of genera-
tions, all bacteria would be extinct, and having no
sustenance, the phages too would die out after some
additional time. In nature however, this does not occur:
both bacteria and phages do survive. The problem of
how they coexist thus arises; this has interested the
biological community for quite a long time now.

Experimental work and model calculations of this
process are abundant, starting with Campbell (1961),
and the seminal work by Levin et al. (1977). But before
discussing their results, let us consider a possible general
solution to the survival problem, namely that of
resistant bacteria (Abedon, 2003). According to this
hypothesis, a phage-resistant mutant, which preexists in
the system (Luria and Delbruck, 1943), takes over under
phage multiplication, while the susceptible bacteria die.
The phages then develop new means to infect the
resistant strain, and so on. This hypothesis however is
unable to explain results, both experimentally and
theoretically (e.g., Bohannan and Lenski, 2000). Resis-
tant bacteria do occur in reality, but (a) the sensitive,
wild-type strains do not disappear, and (b) the ‘‘arms
race’’ between phages and bacteria is too slow to
account for the long term behaviour of both species.

Existing mathematical models are usually based on
Levin et al. (1977) and treat evolution in chemostat
cultures. They consist of several coupled nonlinear
ordinary differential equations describing the time
evolution of the different species: phages, bacteria, and
sometimes nutrients.

The article by Schrag and Mittler (1996) is an
excellent review of the developments achieved until
1995, as well as a source of relevant references. It gives
a systematic discussion of all existing hypotheses to
resolve the problem, namely numerical refuge, arms
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race, transitory immuneness and spatial refuge, and
concludes that spatial refuge is the preferred survival
mechanism. This contention however was opposed in a
recent comprehensive review by Bohannan and Lenski
(2000) describing numerous experiments and calcula-
tions on several baterium/bacteriophage interacting
systems. Observing that several bacterial mutations
occur in the system, and maybe long-term phage
mutations as well, they conducted an in-depth investiga-
tion of how these mutations influence the behaviour of
the system and its adaptation to environmental changes,
and showed that in the long run, original susceptible
bacteria still exist, albeit in small quantities, together
with a group of original, non-modified phages.

We propose here yet another solution to the question
of co-existence, based on the idea of shielding by
bacterial debris: when an active phage adsorbs into
fragments of lysed cells, so-called debris (Kutter et al.,
1994), its DNA is injected into it in a suicidal manner;
having no living organism to thrive on, it cannot
multiply and is discounted from the system as a phage.
After some elapsed time, in either a standing culture or a
serial experiment, the amount of debris can be large
enough so as to effectively shield the remaining bacteria,
depending of course on the natural dissolution rate of
the debris.

2. The model

Unlike previous calculations (e.g. Levin et al., 1977;
Schrag and Mittler, 1996; Bohannan and Lenski, 2000),
a rather simple model is considered here, which assumes
that resources are abundant and practically inexhaus-
tible, hence they do not appear in the equations. Phage
multiplication starts by penetration of its DNA into a
bacterium, where it spends a latent period t; after which
the infected bacterium bursts, releasing a number b of
new phages into the system. We consider here a
‘‘generation’’ model whereby all bursts and new infec-
tions occur at discrete points in time separated by t; and
the time evolution of the concentrations of all species in
the system is monitored only at these time points.
Resistant bacteria as well as statistical changes and
spreads, usually accounted for in other models, are
ignored here. The system consists of four species with
the following concentrations at time step g: sensitive
bacteria Ng; infected bacteria Mg; debris Dg; and phages
Vg: Uninfected bacteria multiply at a rate c0; so that at
time step g þ 1; and without the presence of phages,
their concentration would increase by cNg; where

c ¼ expðc0tÞ � 1Ec0t for c0t51 ð1Þ

is, in the absence of phages, the self-multiplication rate
per phage generation. We follow the customary assump-
tion that phages are adsorbed onto bacteria at a rate

proportional to the product of their concentrations and
an adsorption time constant d0; such that the concentra-
tion of uninfected bacteria at time step g þ 1 is reduced
by the amount dNgVg; where dDd0t: The balance
equation for susceptible bacteria is therefore

Ngþ1 ¼ ð1þ cÞNg � dNgVg: ð2Þ

Next we consider the balance equation for the
transition of infected bacteria to step g þ 1: to the Mg

already present, dNgVg are added through infection of
Ng; and dNg�1Vg�1 are subtracted by burst after a
generation period of one step from g � 1 to g and their
transformation into debris. This gives: Mgþ1 ¼ Mg þ
dNgVg � dNg�1Vg�1; and a simple argument allows this
balance equation to be readily simplified by setting
M0 ¼ 0; and M1 ¼ dN0V0; to give

Mgþ1 ¼ dNgVg: ð3Þ

Note that at this instant, all previously infected
bacteria till step g � 1 have already burst, and are
absent from the balance equation.

We further assume that the dissolution of debris is
proportional to q per generation, and the decrease of
phage concentration per generation, by all mechanisms
except the adsorption, is proportional to dv: (These
quantities are obtained from a similar argument to that
leading to c: for example, if q0 is the dissolution rate,
then qEq0t; provided that q0t51:) The changes of
concentrations of species D and V in one generation are
thus given by the following equations:

Dgþ1 ¼ ð1� qÞDg þ dNg�1Vg�1; ð4Þ

Vgþ1 ¼ ð1� dvÞVg þ bdNg�1Vg�1 � dVgSg; ð5Þ

where b is the burst size. In the last term of Eq. (5),
Sg ¼ Ng þ Mg þ Dg incorporates the possibility of a
secondary infection of M: Assuming that the adsorption
rate d is the same on all infectable species N ; M ; D;
allows rescaling all concentrations as follows: by multi-
plying Eqs. (2)–(5) by d; redefining dN-N ; dM-M ;
etc., and replacing dNg�1Vg�1 with Mg by Eq. (3), the
following set of difference equations is obtained:

Ngþ1 ¼ ð1þ cÞNg � NgVg; ð6Þ

Mgþ1 ¼ NgVg; ð7Þ

Dgþ1 ¼ ð1� qÞDg þ Mg; ð8Þ

Vgþ1 ¼ ð1� dvÞVg þ bMg � VgSg: ð9Þ

In this set of Eqs. (6)–(9) (subsequently denoted by
(S)), the concentrations are measured in units of d�1: To
solve (S) one must impose a set of initial values N0; M0;
D0; V0: If no phages are introduced in the system
ðV0 ¼ 0Þ; then Mg ¼ Dg ¼ Vg ¼ 0 for all g; and N

increases indefinitely. This solution, of course, is quite
uninteresting.
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It is easily seen that (S) has two fixed point (steady-
state) solutions (subscript p), obtained by inserting
Ngþ1 ¼ Ng ¼ Np; Mgþ1 ¼ Mg ¼ Mp; etc. The trivial
solution Np ¼ Mp ¼ Dp ¼ Vp ¼ 0 is an unstable saddle
point F1 since an arbitrarily small positive change in N

would cause an increase away from F1: The interesting
fixed point solution F2 is

Vp ¼ c; ð10Þ

Np ¼ dv=½b� 1� cð1þ 1=qÞ�; ð11Þ

Mp ¼ Npc; ð12Þ

Dp ¼ Npc=q; ð13Þ

which must all be positive. This is possible as long as
b > 1þ cð1þ 1=qÞ; a seemingly strange result, since one
would intuitively expect to get a solution only when
the debris dissolution rate is small. However, a small q;
along with a reasonable value of b would make Np

negative in Eq. (11). It will be shown below that too
small a dissolution rate causes large population oscilla-
tions, ultimately leading to the null solution.

3. Stability analysis of F2

In order to analyse the stability of the fixed point F2 in
the four-dimensional space of the physical parameters
b;c; q; dv we linearize system (S) in the vicinity of F2;
and calculate the eigenvalues of the Jacobian matrix.
This is done, as usual, by setting Ng ¼ Np þ ng; Mg ¼
Mp þ mg; Dg ¼ Dp þ dg; Vg ¼ Vp þ vg; where ng; mg; dg;
vg are small increments, and neglecting second-order
terms. The linearized system is given in matrix form by

ngþ1

mgþ1

dgþ1

vgþ1

2
6664

3
7775 ¼

1 0 0 �Np

c 0 0 Np

0 1 1� q 0

�c b� c �c 1� Npb

2
6664

3
7775

ng

mg

dg

vg

2
6664

3
7775:

ð14Þ

The fourth degree characteristic equation for the
eigenvalues is constructed by subtracting l from
the diagonal terms of the matrix, and equating the
determinant to zero. Its roots are functions of
the physical parameters, and can be all real, or pairwise
complex conjugate. The necessary condition for F2 to be
a stable fixed point is that the absolute values of all

eigenvalues beo1. While it is hard to visualize the entire
four-dimensional space of all parameters, we have
chosen to represent some of the stability properties in
the subspace of ðb;cÞ for several discrete values of q

and dv: For the T4-Escherichia coli system (Hadas et al.,
1997; Rabinovitch et al., 1999a, b), b varies roughly
between 2 and 200, while 5	 10�3oc0o3:5	 10�2; and
10oto35; which yields 0:05oco1:2: Due to their

strong viability, the dissolution time constant dv of the
phages is typically rather small, on the order of 10�3 per
generation, or less. Being almost undocumented, the
values of q on the other hand, were chosen rather
arbitrarily in these calculations. The composite Fig. 1
consists of three frames corresponding to different
values of dv ¼ 10�6; 10�4, and 1.5	 10�3, where the
curves of the stable/unstable transition limit (solid lines)
are shown for a set of three values of q ¼ 8	 10�4;
1.5	 10�3, and 3	 10�3. The dashed lines represent the
locus where the denominator in Eq. (11) changes sign
for the corresponding q: Below these lines the fixed point
has negative coordinates, and is certainly non-physical,
although instability also occurs between solid and
dashed lines for the same q: Notice that the solid
and dashed lines become indistinguishable in the lower
frame.
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Fig. 1. The ðc;bÞ parameters’ subspace showing the loci curves (solid

lines) across which a transition occurs between regions (s/u) of stable

and unstable fixed points of system (S), for different values of q; and
three ‘‘layers’’ of dv ¼ 10�6; 10�4, and 1.5	 10�3. Also shown (dash

lines) are the loci of singularity of Np; according to Eq. (11). The

legends apply to all frames. For the meaning of the pointK P; see text,
Section 4.
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The numerical mapping of eingenvalues for all three q

values in the displayed section of the ðb;cÞ plane shows
in fact that they are either all four real, or two real and a
pair of complex conjugate. The last case always occurs
on both sides of the vicinity of the stability curves,
making the F2 points stable/unstable foci, with all jljo1;
or at least one jlj > 1; respectively; the dynamical
solution of (S) will therefore spiral either into, or away
from F2; provided that the starting point was inside/
outside the basin of attraction (BA) of F2; respectively.

4. Time series simulations

In order to understand the qualitative features of this
model, we subsequently present the time evolution of the
component species, by direct simulation of the time
series of system (S) for a few typical conditions. Only the
species N; D; and V will be addressed and displayed
since M remains very small at all times, and its evolution
is rather inconsequential. All simulations were carried
out with dv ¼ 10�4; at the point P in the ðb;cÞ plane, i.e.
c ¼ 0:12; b ¼ 100; Fig. 1, middle frame.

4.1. An unstable system

We begin with a typical evolution of an unstable
system with q ¼ 8	 10�4; shown in Fig. 2. The
coordinates in the three-species subspace ðN;D;V Þ of
the corresponding unstable fixed point F2 are, by
Eqs. (10)–(13): Np ¼ �1:9	 10�6; Dp ¼ �2:9	 10�4

(both negative), and Vp ¼ 0:12: Initiated at N0 ¼ 2	
10�5; V0 ¼ 0:1; D0 ¼ M0 ¼ 0; this simulation illustrates
the progress of oscillations during three stages, typified
by the amplitude of N: the first starts with a relatively
large amplitude oscillations which decrease until, in the
second stage, the oscillations become again progres-
sively larger. Stage three is marked by a complete, and
very rapid collapse of both bacteria and phages, and
slow exponential decay of D: Under varying initial
conditions the species populations may oscillate more or
less widely, and the duration of the series may be more
or less extended. However, F2 being an unstable fixed
point, all species eventually become extinct. Fig. 3
illustrates the time evolution of the same example in the
ðV ;NÞ phase plane, where the three stages can easily be
identified.

4.2. A stable system

Next, we consider a stable system corresponding
to q ¼ 1:5	 10�3; which situates P above the stable/
unstable locus. The stable fixed point F2 is a focus at:
Np ¼ 5:3	 10�6; Dp ¼ 4:24	 10�4; Vp ¼ 0:12: The ‘‘co-
existence ratio’’ defined here as Vp=Np is about
2.3	 104, in good agreement with experimental results,
e.g. Chao et al. (1977). Note that the approach of the
dynamical solution towards a stable focus always
presents a damped (convergent) oscillatory behaviour.
Initiated at N0 ¼ 10�6; V0 ¼ 0:1; D0 ¼ M0 ¼ 0; the time
evolution in this case is represented in Fig. 4. The first
minimum of any convergent oscillatory N-series,
indicated by a little arrow in this figure, is always
the deepest of all. The solid line spiral trajectory in the
ðV ;NÞ phase plane illustrates this behaviour in Fig. 5,
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P in Fig. 1 and q ¼ 8	 10�4: The fixed point F2 is unstable. Initial

conditions are N0 ¼ 2	 10�5; V0 ¼ 0:1; D0 ¼ 0: Species N and V

eventually die out abruptly, while D decays exponentially.
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indicating that the initial state point is situated within
the BA of F2: Indeed it will subsequently be shown
that stability is obtained only within some of initial
combinations of bacteria and phage populations.

The precise boundaries of the ‘‘mathematical’’ BA of
a given fixed point F2 are very hard to determine, even
partially in the two-dimensional subspace ðN ;V Þ: It may
be infinite, or have a finite extent, with a very
complicated shape. However, since we are dealing here
with the model of a real ‘‘biological’’ system, inherently
unable to capture all its details, it is reasonable therefore
to impose some additional constraints on the size of the
BA, inferred from an understanding of the real system.
For example, we may assume that if, during its
evolution in time, the population of bacteria N falls

below a certain lower level, in should be regarded as
practically extinct. As a matter of illustration we choose
a lower limit of NE10�10; which, due to the scaling
by d�1; corresponds to about 3 individuals/ml in the
sample. Thus, when the value of N drops below this
limit during its first, deepest, down swing, the species
becomes ‘‘extinct’’, thereby drastically reducing the
extent of the corresponding BA.

Fig. 6 represents the map of such a biological BA of
F2 (diamond) in the ðN ;V Þ plane. It was constructed by
simulating a large number of time series initiated at
various points ðN0;V0Þ in the plane. All series initiated
inside the contour stayed above the lower limit of 10�10,
while those starting outside dropped below this value. A
sample of such initial points (crosses) is shown around
the contour, the adjacent negative numbers –s indicating
the values 10�s below which drop the first minima of the
corresponding N-series. It is seen that the boundaries of
the BA extend over more than three orders of magnitude
of N; while the V range is extremely narrow. The system
becomes unstable for initial N populations above 10�4.

Fig. 7 represents the simulation of the same physical
system, except that it was initiated from a state outside
the BA, namely at N0 ¼ 10�4; V0 ¼ 0:135; D0 ¼ M0 ¼
0; indicated by the cross marked A on the BA map of
Fig. 6. The results show a relatively rapid extinction of
N; followed by the usual exponential decay of D and V ;
occurring in the absence of live bacteria. This behaviour
is also illustrated in the ðV ;NÞ phase plane of Fig. 5 by
the dashed line monotonous trajectory.

4.3. Shielding by debris

Finally, we wish to demonstrate the main idea
announced in the Introduction, namely shielding by
debris, whereby active phages are ‘‘wasted’’ by sterile
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infection of a relatively large population of rem-
nants of dead bacteria (debris) in the culture, thus
being discounted from the system, without further
consequences.

Reasoning backwards for this purpose, we solve
instead of (S), a system of equations with only three
components N; M ; and V ; where debris D are
completely ignored

Ngþ1 ¼ ð1þ cÞNg � NgVg; ð15Þ

Mgþ1 ¼ NgVg; ð16Þ

Vgþ1 ¼ ð1� dvÞVg þ bMg � VgðNg þ MgÞ: ð17Þ

An analysis of stability for the fixed points similar to
that in Section 3 leads, instead of Eq. (14), to the
following linearized system:

ngþ1

mgþ1

vgþ1

2
64

3
75 ¼

1 0 �Np

c 0 Np

�c b� c 1� bNp

2
64

3
75

ng

mg

vg

2
64

3
75; ð18Þ

where, instead of Eq. (11), we now have Np ¼ dv=
ðb� 1� cÞ:

The characteristic equation for the eigenvalues l of
the linearized system is now of degree three, for the
roots of which, there exist explicit, albeit not particularly
interesting, algebraic formulae. Instead, we conducted a
thorough mapping of the section of the ðb;cÞ plane
shown in Fig. 1, middle frame (ignoring of course, the
now irrelevant q-loci), and solved the eigenvalue
problem of system (18) numerically on a sufficiently
dense grid of points. It is well known that the roots of
such a problem can be either all three real, or one real

and a pair of complex conjugates. The mapping results
were quite revealing: over the whole examined grid of
points we invariably found at least one eigenvalue for
which jlj > 1; making the corresponding fixed point
unstable. It can therefore safely be concluded that the
system becomes unstable in the absence of debris.

For the chosen set of physical parameters (i.e. point P;
and dv ¼ 10�4), the fixed point F2 in the ðV ;NÞ phase
plane is at Np ¼ 1:01	 10�6; Vp ¼ 0:12: Initiated at the
same initial point as in Fig. 4 (i.e. N0 ¼ 10�6; V0 ¼ 0:1;
M0 ¼ D0 ¼ 0), the time evolution is illustrated in Fig. 8,
where N; after increasing for some time, collapses
eventually, followed by a slow exponential decay of the
phages.

5. Analysis

In a recent publication (Rabinovitch et al., 2002),
empirical relations were obtained between the latent
period t and the burst size b of T4 phage on the one
hand, and the bacterium E. coli doubling time T on the
other, as follows:

t ¼ 1:14� 0:0068T2; ð19Þ

b ¼ ð0:254T � 0:00166T2Þexpð92:1=TÞ: ð20Þ

Given the defining relationship between the growth
rate c0 and the doubling time T ; as c0T ¼ ln 2; Eq. (1)
can be rewritten as

c ¼ expð0:693t=TÞ � 1 ¼ 2:203expð�0:0047TÞ � 1;

ð21Þ
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where the second equality results from the substitution
of Eq. (19) for t:

As already mentioned in Section 2, Eq. (11), a steady-
state solution is possible only if b� 1 > cð1þ 1=qÞ:
Fig. 9 shows both b� 1 and cð1þ 1=qÞ as functions of
T for several typical values of q: The range of existence
of stable solutions in the corresponding cases resides to
the left of the points of intersection, marked by open
circles. For example, the smallest shown q ¼ 0:009
allows for steady-state solutions only below TE34;
while for larger values of T ; diverging concentration
oscillations are expected, leading to extinction of all
species. The higher the value of q however, the broader
will be the range of T ; permitting steady-state solutions.
This rather unexpected result could possibly be ex-
plained by excess shielding for small q values, i.e. the
shielding is so efficient as to encourage an excess of
bacteria in the system, which in turn, induces a larger
population of phages, and so on, leading to extensive
oscillations and eventual extinction.

6. Discussion

The relatively simple mathematical model developed
in this work has shown that the presence of bacterial
debris in the bacteria–bacteriophage system alters its
asymptotic solution from an unstable focus to a possibly
stable one, thus becoming a haven of survival and
coexistence of both species. A number of remarks seem
to be in order:

1. If the value of d0 is of the order of 10�12min�1ml�1

(Abedon, pers. Comm.), concentrations below
10�10 d�1 may be considered extinct, as explained
above (part 4.2). Extinction levels under other values
(e.g. Bohannan and Lenski, 2000) would be estimated
correspondingly.

2. Asymptotic levels of concentration are reached only
after a very long time.

3. The properties of the debris are of paramount
importance for the system survival. This includes
the ‘‘suicidal’’ penetration of phages to bacterial
debris, and its decay rate. For example: is the phage
adsorption rate d the same for N and for D; as we
somewhat arbitrarily assumed in the calculations?
The answer may be crucial for the assessment of the
model. These properties are hitherto unknown, and it
would be quite advantageous to measure them.

4. Persistence of bacterial cells in the environment is
conditioned by existence of viral decay, as implied by
Eq. (11).
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