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1. Introduction

The average size of a bacterial cell growing at a
rate u, and in a steady state, increases exponentially
with p and with the time ‘C’ taken to replicate the
chromosome [1-11].

Despite the regular fashion by which they grow
(i-e. by elongation only [8,12]), Gram-negative bacilli
in enriched medium are not only longer but also
thicker [4,6,9,10,13,14]. Similarly, although specific
inhibition of chromosome replication results in fila-
mentation [15], Escherichia coli cells increase their
volume at slower replication rates essentially by
increasing their diameter ([6,14], Meacock, Roberts
and Pritchard; personal communication). Longer C
periods can be obtained by supplementing Thy ™~ bac-
teria with lower concentrations of thymine [16—-18].
When various Thy ™ strains of E. coli are cultivated at
relatively fast growth rates (u > 1.2 h™1), steady-state
conditions cannot be reached and the cells continu-
ously increase in size [6,16,19] even though the cul-
tures are “balanced” [20]. Steady states can be
achieved by flooding Thy ™, Drm™ cells with deoxy-
ribose-1-phosphate [21—23]. This sugar-phosphate is
a breakdown product of deoxynucleotides supplied
to the growth medium, is not further degraded in
Drm™ mutants, and is required for thymine utiliza-
tion in Thy™ strains [14,24].

The first series of experiments describing this
abnormality was performed with glucose-grown E.
coli 15T strain 555-7 [16]. It was impossible to
characterize a final shape because after a long period
of undisturbed exponential growth in M9 minimal
salts medium (u = 1.5 h~! [25]), the cultures floc-
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culated, preventing further measurements. This ob-
stacle has now been overcome following the recent
observation of Kahan (M.Sc. Thesis, Ben Gurion Uni-
versity, 1977) that a slight modification of the salts
solution (AB; [26]) lessens the flocculation mark-
edly.

A dramatic, reversible change in the regular bacil-
lary shape of E. coli 15T is described and the pos-
sible mechanisms discussed by which bacterial shape
formation may be controlled.

2. Materials and Methods

E. coli 15T~ (strain 555-7 [24]) or its Thy* trans-
ductant [21] was cultivated in AB minimal salts solu-
tion [26] supplemented with 0.4% glucose, 50 pg/ml
of each of the required amino acids (arginine, methio-
nine and tryptophan), thymine at the concentration
indicated and, where stated, with 100 pg/ml of
deoxyguanosine. The cultures were vigorously aerated
at 37°C in a New-Brunswick gyratory shaker. Length-
ening of the cultivation period (to maintain condi-
tions of unrestricted, exponential growth) was
achieved by appropriately diluting the culture into
fresh, prewarmed medium before it reached absorb-
ance of 0.3 at 450 nm (Gilford microsample spectro-
photometer).

Samples were fixed either by 0.25% formaldehyde
(for light microscopy) or by 0.1% osmium tetroxide
(for electron microscopy). Pictures were photo-
graphed under a Zeiss phase microscope. Electron
micrographs of cells, air-dried by a modification [10]
of the agar-filtration technique [27], were taken at
3600 magnification.
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3. Results and Discussion

When E. coli 15T grow unrestrictedly in minimal
salts medium with glucose as the sole carbon source,
the gradual increase in average cell size [6,16,19] is
accommodated primarily by an increase of cellular
girth associated with a change in cell shape from a rod
to an ellipsoid form [6]. During longer cultivation
under similar conditions with 0.4 ug/ml thymine (a
concentration double that sufficient for exponential
growth to a density of 10° cells/ml [25]), most of the
cells lost their uniform shape and dimensions (Figs. 1
and 2) and their surface area became wrinkled and
uneven as seen under a scanning electron microscope
(unpublished observation). Still more striking was the
finding that a small proportion of the population
started to branch (Figs. 1 and 2). This transition was
not accompanied by any detectable change in the rate
of total mass increase (absorbance). It was not possi-
ble by simple means to determine whether these
branching cells lost viability (as happens during thy-
mine starvation [28]) because they comprised less
than 1% of the total population. However, they
seemed to constrict occasionally and cast-off smaller

cells that were identical to the rest of the population.
Moreover, the formation of the branching subpopula-
tion was fully reversible: about 80 min after adding
deoxyguanosine to growth medium the culture con-
sisted of smaller (though still irregular) cells (Fig. 3a).
The total lack of branching cells after only three mass
doublings argues against their death, unless the addi-
tion of deoxyguanosine stimulated their disintegra-
tion. A series of anomalous cytological changes
culminating in sudden disintegration have been ob-
served [29] in E. coli K12 cells treated with 5-fluoro-
uracil. This unambiguous death was ascribed to
“osmotic imbalance” [30] because it could be
reversed by an hyperosmotic milieu. It may be neces-
sary to follow the growth of single cells under the
microscope (after restoring the replication velocity by
adding deoxyguanosine {21—23]) in order to decide
whether these monster cells remain viable and return
to their normal, rod shape.

Lower concentrations of thymine metabolites
involved with bacterial envelope synthesis [31,32]
have recently been proposed (R.H. Pritchard, per-
sonal communication) as a possible reason for the
increased cellular girth (associated with a decreased in

Fig. 1. E. coli 15T~ (555-7) grown exponentially in glucose
minimal salts medium supplemented with 0.4 ug thymine per

ml about 12 h after dilution from similar growth conditions
with 20 ug/ml thymine. X 2000.



67

Fig. 2. Electron micrographs of agar-filtered cells of E. coli. 15T cultivated as in Fig. 1.

surface/volume ratio) of Thy ™ E. coli strains. The ob-
servations described here are inconsistent with this
view, because branching results in increasing surface/
volume ratio. Similar morphological changes have also
been observed [33,34] in E. coli C and in E. coli
ML30 under conditions that are not expected to
lower the concentrations of the thymine metabolites
involved.

A possible explanation for this branching phenom-
enon is based on the replicon model {35] and on a
direct relationship between chromosome replication
and cell elongation [6,10,14,36]; a unidirectional
mode of replication at a low thymine concentration,
observed recently [37] in a Thy ™ derivative of E. coli
K12 (as opposed to the usual, bidirectional replica-

tion; e.g. ref. 38), may thus be responsible for this
assymetrical mode of growth. The total lack of
branching of Thy™ E. coli B/r (LEB 16; 18) cul-
tivated under similar conditions (A. Zaritsky and C.L.
Woldringh, unpublished observation) may thus mean
either that this strain never fails to replicate its chro-
mosome symmetrically or that its envelope is more
rigid than that of E. coli 15, C and ML30. The latter
is favoured in light of the decreased growth rate
attained under these conditions in E. coli Bfr (Wold-
ringh and Zaritsky, unpublished observation). Simi-
larly, lower thymine concentrations increase the
doubling time of the Gram-positive Bacillus subtilis
[17], presumably due to the rigidity of its walls. Dis-
torted cell forms and heterogeneous populations were
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Fig. 3. E. coli 15T~ (555-7) grown exponentially in glucose minimal salts medium supplemented with 0.4 ug thymine per ml
(a) 80 min after addition of deoxyguanosine and (b) 8 h later. X 2000.



also recorded [39] in an envelope mutant (envB) of
E. coliKX12.

Finally, I would like to speculate that the branch-
ing phenomenon described here may perhaps be
analogous to hyphal branching in filamentous fungi
-[40], as will be discussed elsewhere (Rosenberger,
R.F., Grover, N.B., Zaritsky, A. and Woldringh, C.L.;
in preparation).

Acknowledgements

I wish to thank C.L. Woldringh for introduction to
the agar-filtration technique, G. Raziel for skillful
printing of photographs and N.B. Grover for helpful
reading through the manuscript. This work was sup-
ported by the Israel Academy of Sciences and
Humanities — Commission for Basic Research.

References

[1] Donachie, W.D. (1968) Nature (London) 219, 1077—
1079.

[2] Pritchard, R.H., Barth, P.T. and Collins, J. (1969)
Microbial Growth, XIX Symp. Soc. Gen. Microbiol. p.
263-297.

[3] Cooper, S. and Helmstetter, C.E. (1968) J. Mol. Biol.
31, 519-540.

[4] Schaechter, M., Maalge, O. and Kjeldgaard, N.O.
(1958) J. Gen. Microbiol. 19, 592—606.

[5] Spratt, B.G. and Rowbury, R.J. (1971) J. Gen. Micro-
biol. 65, 305-314.

(6] Zaritsky, A. and Pritchard, R.H. (1973) J. Bacteriol.
114, 824-837.

[7] Sargent, M.G. (1975) J. Bacteriol. 123, 7-19.

[8] Daneo-Moore, L. and Shockman, G.D. (1977) Mem-
brane Assembly and Turnover, in Cell Surface Reviews,
Vol. IV (Poste, G. and Nicolson, G.L. eds.), North-
Holland, Amsterdam, in press.

[9] Woldringh, C.L. (1976) J. Bacteriol. 125, 248-257.

[10] Grover, N.B., Woldringh, C.L., Zaritsky, A. and Rosen-
berger, R.F. (1977) J. Theoret. Biol., in press.

[11] Lane, H.E.D. and Denhardt, D.T. (1974) J. Bacteriol.
120, 805-814.

[12] Marr, A.G., Harvey, R.J. and Trentini, W.C. (1966) J.
Bacteriol. 91, 2388-2389.

[13] Previc, E.P. (1970) J. Theoret. Biol. 27, 471-497.

69

[14] Pritchard, R.H. (1974) Phil. Trans. R. Soc. B267,
303-336.

[15] Schwarz, U., Asmus, A. and Frank, H. (1969) J. Mol.
Biol. 41,419-429.

[16] Pritchard, R.H. and Zaritsky, A. (1970) Nature
(London) 226, 126-—-131.

[17] Ephrati-Elizur, E. and Borenstein, S. (1971) J. Bacte-
riol. 106, 58—64.

[18] Meacock, P.A. and Pritchard, R.H. (1975) J. Bacteriol.
122,931-942.

[19] Sloan, J.B. and Urban, J.E. (1976) J. Bacteriol. 128,
302-308.

[20] Kubitschek, H.E. (1970) Introduction to Research with
Continuous Cultures. p. 7 Prentice-Hall, New York.

[21] Beacham, I.R., Beacham, K., Zaritsky, A. and Pritchard,
R.H. (1971) J. Mol. Biol. 60, 75—86.

[22] Zaritsky, A. and Pritchard, R.H. (1971) J. Mol. Biol. 60,
65-74.

[23] Zaritsky, A. (1975) J. Bacteriol. 122, 841--846.

[24] Barth, P.T., Beacham, I.R., Ahmad, S.1. and Pritchard,
R.H. (1968) Biochim. Biophys. Acta 161, 554-557.

[25] Pritchard, R.H. and Lark, K.G. (1964) J. Mol. Biol. 9,
288-307.

[26] Clark, D.J. and Maalge, O. (1967) J. Mol. Biol. 23,
89-112.

[27] Kellenberger, E. and Kellenberger, G. (1954) Proc. Int.
Conf. Electron Microscopy, London, p. 268.

[28] Cohen, S.S. and Barner, H.D. (1954) Proc. Natl. Acad.
Sci. USA 40, 885-893.

[29] Tomasz, A. and Borek, E. (1960) Proc. Natl. Acad. Sci.
USA 46, 324-327.

[30] Tomasz, A. and Borek, E. (1959) Proc. Natl. Acad. Sci.
USA 45,929-932.

[31] Hosono, R., Hosono, H. and Kuno, S. (1975) J. Bio-
chem. 78, 123-129.

[32] Okazaki, T., Strominger, J.L. and Okazaki, R. (1963) J.
Bacteriol. 86, 118—124.

[33] Suit, J.C., Barbee, T. and Jetton, S. (1967) J. Gen.
Microbiol. 49, 165-173.

[34] Shaw, M.K. (1968) J. Bacteriol. 95, 221-230.

{35] Jacob, F., Brenner, S. and Cuzin, F. (1963) Cold Spring
Harbor Symp. Quant. Biol. 28, 329-348.

[36] Donachie, W.D. and Begg, K.J. (1970) Nature (London)
227,1220-1224.

[37] Edlund, T., Gustafsson, P. and Wolf-Watz, H. (1976) J.
Mol. Biol. 108, 295-303.

[38] Bird, T.E., Louarn, J., Matuscelli, J. and Caro, L. (1972)
J. Mol. Biol. 70, 549—566.

[39] Bloom, G.D., Gumpert, J., Normark, S., Schuhmann,
E., Taubeneck, U. and Westling, B. (1974) Z. Allg.
Mikrobiol. 14, 465-477.

(40] Katz, D., Goldstein, D. and Rosenberger, R.F. (1972) J.
Bacteriol. 109, 1097-1100.



