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Theoretical expressions are derived for two models that describe average 
length and radius of a population of rod-shaped bacteria as a function of 
time following their transfer to a medium that supports a higher growth 
rate. The first attributes cell elongation to circular zones produced at a 
particular time during the cell cycle and which act thereafter at rates 
proportional to the growth rate; the second is formally identical but 
considers surface growth rather than length extension. Two possibilities are 
considered, that the zonal growth rate adjusts immediately to the tran- 
sition, and that it does so gradually. The results are also displayed graphi- 
cally, covering a broad range of each of the various parameters involved; 
values are chosen to permit a direct comparison between the models. 

Average cell length is seen to undergo a large overshoot and to approach 
its steady-state value from above, while cell radius remains almost constant 
or even decreases somewhat before increasing monotonically towards its 
asymptotic level; both require a considerable period of time to reach steady 
state. 
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The transient behavior predicted by the two models is found to be quite 
different even when the steady-state dimensions are identical; the 
differences between immediate and gradual response of the zonal growth 
rate are even greater. It is shown that using a dimensionless measure of cell 
geometry, the aspect ratio, can facilitate selection of the appropriate model. 

1. Introduction 

Many aspects of the growth and division of bacteria have been studied 
through observations on cultures in balanced, exponential growth in 
different media (Schaechter, Maaloe & Kjeldgaard, 1958; Dennis & 
Bremer, 1974). An extension of this approach that enhances our under- 
standing of the bacterial cell cycle, considers transitions from one such state 
to another. The most common of these are the so-called shift-up experi- 
ments, in which the culture is transferred (at constant temperature) to a 
richer medium and its properties of interest monitored until the new steady 
state is attained (Kjeldgaard, Maalae & Schaechter, 1958; Cooper, 1969; 
Bremer & Dennis, 1975). 

Measurements of the dimensions and elongation rates of bacilliform 
bacteria under different steady-state growth conditions have led to a model 
that attributes cell extension to a circular zone produced at a particular time 
during the cell cycle and which acts thereafter at a rate proportional to the 
growth rate (Zaritsky & Pritchard, 1973; Sargent, 1975; Donachie, Begg & 
Vicente, 1976). Extensive measurements of the length of Escherichiu coli 
B/r cells (strain H266) as a function of generation time, indicate that the 
doubling in the rate of elongation takes place about 17 min before cell 
division (Grover et al., 1977). If, on the other hand, surface growth rather 
than length extension is considered, then essentially the same data imply a 
doubling some 49 min prior to division (Rosenberger et al., 1978). 

In principle, such a large difference could easily be used to distinguish 
between the length and surface area models provided, of course, that the 
time of doubling can be determined independently. Direct measurement 
using synchronous cultures (Hoffman, Messer & Schwartz, 1972; Church- 
ward & Holland, 1976; Donachie, Begg & Vicente, 1976; Hackenbeck & 
Messer, 1977), however, have so far not proved successful. (This may be due 
to the difficulties of obtaining good synchrony without disturbing steady- 
state growth.) 

Both models were fit to the same (steady-state) data and so, of necessity, 
both predict similar dimensions for cells in balanced growth. In the hope that 
their transient behavior would be different, we have turned to the shift-up 
design. In the original formulation of the models (Zaritsky & Pritchard, 
1973; Pritchard, 1974; Grover et al., 1977; Rosenberger et al., 1978), the 
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question was left open as to whether, under such conditions, the rate of cell 
elongation (or surface synthesis) changes abruptly at shift-up from being 
proportional to the pre-shift growth rate to being proportional to the 
post-shift growth rate, or whether it does so gradually. In the absence of 
suitable guidelines from the literature, we have analyzed both cases. 

In the present article, theoretical expressions are derived for each model 
that describe average length and radius of a population of cells as a function 
of time following their transfer to a medium that supports a higher growth 
rate. Actually, the only functions we are able to calculate directly are total 
cell volume and cell number and total cell length (for the length extension 
model) or surface area (for the surface growth model); the remaining 
dimensions are derived from these three basic quantities and the assumed 
geometry: right circular cylinders with hemispherical polar caps. The prin- 
cipal results are also displayed graphically. In the following article 
(Woldringh et al., 1980), we present the experimental data and compare 
them with the theoretical predictions. 

2. Theory 

The approach we shall adopt is to fix on a population of cells that is in 
steady state prior to shift-up and follow its properties as a function of time t 
after shift-up (at t = 0) from a generation time of ri to one of Q, TZ < rl. The 
notation is similar to that used previously (Grover ef al., 1977): C is the time 
for a replication point to traverse the genome, D is the time between the end 
of a round of replication and the subsequent cell division (Cooper & 
Helmstetter, 1968), d( 5 C + D) is the time prior to this division at which the 
rate of length extension (or surface growth) doubles; C + D, d, 71 and r2 are 
average values over the cell population and assumed to be independent 
of time. 

(A) TOTAL MASS 

Total cell mass as a function of time after shift-up M(t) is very nearly 
proportional (Maaloe & Kjeldgaard, 1966) to the amount of total protein 
P(t) plus stable RNA S(t). The latter increases exponentially with time and 
adjusts to the shift-up immediately (Bremer & Dennis, 1975): 

S(t) = S(O)2”” for t 5 0 

= S(0)2”‘z for r 2 0. 

The rate of protein production, on the other hand, is proportional to the 
number of ribosomes. Since rRNA is a constant fraction of S (Dennis & 
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Bremer, 1974), we have that 

P(f) = P(0) + &(0)~(2”~~ - l)/ln 2 for r 2 0, 

where P(0) is given by the amount of protein produced during rl: P(0) = 
erS(O)rr/ln 2; the Ej are constants proportional to the ribosomal efficiency 
at rfi Thus 

M(f) LI P(t) + S(t) = C&272 + In 2)2”“+ (~~7~ - eZrZ) 
M(O) P(O) + S(0) sITI +ln 2 

= 1+ U1(2”72- l), 

where ul = (~~7~ +ln 2)/(e17r +In 2). 

(B) CELL LENGTH 

According to the length extension model (Pritchard, 1974; Rosenberger 
et al., 1978), the number of growth zones in a cell doubles a fixed time d prior 
to cell division. Since division takes place C + D min after initiation of 
chromosome replication (Cooper & Helmstetter, 1968), the total number of 
zones in the culture 2 lags behind the number of chromosome origins @by 
C +D -d min: Z(t) = @(t-c), where c = C +D -d. In addition, Q(O) is 
equal to N(0)2(C+D)‘r1, where N(0) is the total number of cells at t = 0 
(Bremer & Churchward, 1977), and @(t) is proportional to total cell mass 
M(t) (Donachie, 1968; Pritchard, Barth & Collins, 1969). Thus 

M(t-c) 
Z(t)=@(t-cc)= M(O) a(o) = N(0)2(‘+d”” 

= jV(0)2’C+D”‘1{1 + f~r[2+~)‘~~-- 11) for t Z c. 

The total length at any time t, L(t), is given by 

L(t) =,5(O)+ ‘a(e)Z(C?) de, 
I 0 

where (~(6) is the rate of cell elongation per zone at time 8. 
The length extension model takes (Y to be inversely proportional to the 

doubling time 7 or to the time it would take to double M(t) at the current 
rate of growth, dM(t)/df. In exponentially growing cultures, these assump- 
tions are equivalent; under shift-up conditions, they are not: the former 
implies that the transition from being proportional to l/71 to being propor- 
tional to l/~ occurs abruptly at t = 0, the latter implies that it takes place 
gradually as the new steady state is approached. These we now term the (Y 
and (Y’ versions, respectively. Specifically, cy goes from k(ln 2)/7r at t = 0 to 
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k(ln 2)/r* in the cy version and to k(ln 2)/7;(f) in the a’ version, where 

Ti(t)=T*(l +V&+Z) 

and uz= (1 - ul)/ul. Thus, for the (Y version, by direct integration, 

L(t) -=1+71(yh-~) 
L(O) 72 

for t 5 c 

UC) zz -+ ulpl 
[ 

In 2 
wo 

t.*12(t-c)+2(fPc”T2-l 1 for tzc, 

whereas for the a’ version 

for tsc 

L(c) (In 2)2”“’ 

=L(o)+ 72 

’ 1 + u1[2’e-c)‘sz - l] 
1+ v22 -e/iz 

d0 fortzc 

and cannot be expressed analytically unless TV is an exact multiple of 72 
(Courant, 1937). 

It may be instructive to derive L(t) by foctfsing on the behavior of 
individual cells rather than on total cell mass and number of origins. We have 
done this for the case in which cell mass is assumed to respond to the new 
growth rate immediately and not as found by Bremer & Dennis (1975). 
Even with so gross an oversimplification, the mathematics is still long and 
tedious. Details of the development can be found in the Appendix; the final 
result is identical with that found above to the same level of approximation 
(VI = 1). 

(C) CELL NUMBER 

A cell initiates chromosome replication when it has attained a constant 
mass per origin (Donachie, 1968; Pritchard et al., 1969); it divides 
C +D min later (Cooper & Helmstetter, 1968). The number of cells 
N(t) is therefore directly proportional to total cell mass but with a time 
lag of C + D. Thus 

N(t) N(O) =--- 
M(t-c’) M(-c’)’ 

where c’=C+D, and 

N(t) _ 21/T, 
N(O) 

for tsc’ 

= 2C’b ‘(1 + ~~[2’~-~‘)‘~~-- l]} for t 2 c’. 
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(D) SURFACE GROWTH 

The expressions for total cell length L(t) were derived on the basis of the 
linear elongation model. Completely analogous expressions are obtained 
for total surface area A(t) in the case where cell envelope rather than length 
increases linearly with cell age, it is only necessary to replace L(t) by A(t) 
[and, formally, a(t) by 0 (t), where p(t) is the rate of surface growth per zone 
at time t]. 

(E) DERIVED DIMENSIONS 

Mean cell mass and mean cell length (or surface area) follow directly from 
the corresponding total quantities by dividing by N(t). In order to proceed 
further, we adopt the not unreasonable assumptions (Koch & Blumberg, 
1976) of constant mean cell density as a function of 7, which enables usto 
equate total cell volume with total cell,mass, and an idealized geometry: E. 
coli is taken to be a perfect rod-shaped bacterium with hemispherical polar 
caps. Mean cell volume v(t) and surface area X(t) can then be expressed in 
terms of mean cell length t(t) and radius R(t) to provide two simultaneous 
equations in two unknowns, 

V(t)= *~2(t)[~(t)-2R(t)J+~?r~3(t)= 7rR2(t)[E(t)-$?(t)] 

/i(t)= 27rl?(t)[~(t)-21?(t)]+47rl?2(t)= 27&(t)~(t). 

In the length extension model, the unknowns are B(t) and A(t), and the 
first of these expressions gives rise to a cubic equation in R(t) in terms of 
v(t) andE(t); in the surface growth model, the unknowns are R(t) andE(t), 
and both expressions are required in order to obtain the cubic equation in 
J?(t) in terms of v(t) and A(t). In either case, there is always one and only 
one root in the range 0<2R(t)<t(t). 

It should be borne in mind that J?(t) as used here is not the true mean 
radius of the cells, in the accepted sense of the word, but rather the radius of 
a cell with mean volume e(r) and mean length e(f), for the length extension 
model, or mean volume v(t) and mean area A(t), for the surface growth 
model. To emphasize this point, we label these quantities RL and R,+ 
respectively, and the corresponding lengths and surface areas, LL, LA and 
AL, AA. In part, this is done for consistency, as obviously LL=t(t) and 
Aa =A(t). The various symbols and their origin are summarized below. 

Dimension Length extension model 
Length LL = E(t), from model 
Area AL, from e(t) and l(t) 
Radius Z$,, from v(t) and L(r) 
Volume V(t), independent of model 

Surface growth mods1 
L,, fro* V(t) and A(t) 
AA = A(t),-from model 
R_A, from V(t) and A(t) 
V(t), independent of model 
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3. Results 

Six families of curves are presented to illustrate the results of the cal- 
culations of the previous section. Mean cell length and radius are shown in 
turn as a function of time during the first 4 h following shift-up. All the 
curves were drawn by a computer-drive incremental x-y flat-bed plotter 
accurate to within 0.1% of one scale division. The values of the parameters 
have been chosen so as to permit a direct comparison between the models 
and to cover a broad range of experimental conditions. 

In order to obtain such plots, it is first necessary to compute the steady- 
state dimensions explicitly. The appropriate expressions have been pub- 
lished before (Grover et al., 1977; Rosenberger et al., 1978), and we repeat 
them here for convenience: 

V(O) = (In 2) K2(C+D)‘T1; V(oO) = (ln 2) Vi2’c+D”Tz; 

E(0) = & 2dh; 

The coefficients Vi, kL, kA are as defined previously; the labelling has been 
modified slightly to conform to our present usage. It is also necessary to 
assign numerical values to the ribosomal efficiencies at r1 and TV. This was 
done using an approximate expression for E extracted from the data of 
Bremer & Dennis (1975) by linear regression: 

E = 0.1455 for 7 I50 min 

= 0.0066+7*19/T for 7 2 50 min. 

Mean cell length is depicted in Fig. 1. Nine pairs of curves are plotted, one 
member of each pair illustrating the dependence on time of LL (solid lines) 
and the other of LA (dashed lines). The various parameters were chosen as 
follows. Values for kL and dL were taken from an earlier article in which cell 
dimensions under steady-state conditions were described by the length 
extension model (Grover et al., 1977); kA and dA are from a similar analysis 
based on the surface growth model and using essentially the same raw data 
(Rosenberger et a& 1978). These four parameters allow us to compute 
z(O), E(a)), A(O), A(m) from the above expressions for any given 71 and Q, 
and thence R(O), R(co), e(O), ~(OO), Vi and C+D. Thus LL and LA are 
completely specified, and in such a way as to coincide both before shift-up 
[with E(O)] and after the new steady state is reached [with L(W)]. [This form 
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a 

0 30 60 90 120 150 180 210 240 

Time f (mm) 

FIG. 1. Mean cell length t(t) as a function of time t following shift-up from q = 72 min to 
Q = 24 min, for various combinations of (C + D), dr, d,+ Immediate response version. Solid 
lines: length extension model; dashed lines: surface growth model. 

Curve pair 
C+D & 
(min) (min) 

dA 
(min) 

80.2 17.1 49.3 
28.6 54,3 

4.5 44.3 
71,8 27.1 49.3 

38.1 54.3 
15.6 44.3 

63.5 17.1 40.6 
28.4 45.6 

5.1 35.6 
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of graphic display is designed to facilitate comparison between the two 
models and will be used throughout this and the succeeding article 
(Woldringh et al., 1980).] 

The pre-shift dimensions and Q and 72 are the same for all the curves in 
Fig. 1, the other parameters are not. Curve pair 1 uses the values derived 
above, pair 2 uses the same C + D but its dA has been increased by 5 min; in 
pair 3, (iA has been decreased by 5 min. For pair 4, dA and ka have been 
reset to those in pair 1 but dL has been increased by 10 min. The new C + D 
value obtained has then been used for the next 2 pairs of curves, their dA 
values again being 5 min above and 5 min below that of pair 4. Pair 7 has the 
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FIG. 2. Mean cell length L(t) as a function of time I following shift-up from 71 = 72 min to 
72 = 24 min, for the same combinations of (C + D), dL, d.., as in Fig. 1. Gradual response 
version. Solid lines: length extension model; dashed lines: surface growth model. 
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FIG. 3. Mean cell length t(t) as a function of time t following shift-up with (C+D) = 
80.2 f  09 1 min, dL = 17.1 min and da = 49.3 min, for various combinations of 71 and ~2. Solid 
lines: length extension model; dashed lines: surface growth model. 
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same dL and kL as pair 1; its C + D was chosen to be less than that of pair 4 
by the same amount as the C +D of pair 1 is greater. Pairs 8 and 9 again 
show the effect of changing dA by 5 min. 

The nine pairs of curves in Fig. 1 were calculated using the expressions 
developed for the (Y or immediate response version of the models; Fig. 2 
contains the corresponding curves for the (Y’ version. 

Both versions appear in Fig. 3. The first four pairs of curves depict 
different combinations of 71 and r2 for the (Y version and the last four for the 
(Y’ version, all eight having the same dL, kL, dA, kA used in pair 1 of Fig. 1. 
(Thus pair 1 here is a repeat of pair 1 in Fig. 1 and pair 5, of pair 1 in Fig. 2.) 

Figures 4-6 are completely analogous to Figs 1-3, and with an identical 
set of parameters, but illustrate the behavior of RL and RA rather than LL 
and LA. 

0 65 r 
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I  I  I  I  I  !  I  
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r2=24mln response 
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RA ---- 
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0 35 
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FIG. 4. Mean cell radius R(t) as a function of time I following shift-up from 71 = 72 min to 
72 = 24 min, for the same combinations of (C + D), dL, dA as in Fig. 1. Immediate response 
version. Solid lines: length extension model; dashed links: surface growth model. 
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I Gradual 
T, = 72 min response 

0.60 rz = 24min 
RL 

0.20: 
0 30 60 90 120 150 180 210 240 

Time t (min) 

FIG. 5. Mean cell radius I?(t) as a function of time t following shift-up from q = 72 min to 
Q = 24 min, for the same combinations of (C + D), d,, dA as in Fig. 1. Gradual response 
version. Solid lines: length extension model; dashed lines: surface growth model. 

4. Discussion 

The results presented here justify the approach proposed in the Intro- 
duction: the transient behavior predicted by the length extension model 
(Grover et al., 1977) is indeed quite different from that expected on the basis 
of the surface growth model (Rosenberger et at., 1978) even when the 
parameters are chosen to produce identical steady-state dimensions. This is 
particularly true in the case where the growth rate is assumed to change 
abruptly at shift-up but holds in the gradual response version as well, only to 
a lesser extent. Previous studies (Grover et al., 1977; Rosenberger et al., 
1978) have shown that the experimental data require d to be greater in the 
surface growth model than in the length extension model. This implies that 
the latency period c (= C + D - d), during which the number of growth 
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c+D =80,2min 

Immedioie response (l-4) 
Groduol response (5-8) 

R, -__-- 

Time 1 (men) 

FIG. 6. Mean cell radius I?(t) as a function of time t following shift-up with (C-t-0) = 
80.2 f  0.1 min, dL = 17.1 min and dA = 49.3 min, for the same combinations of q and Q as in 
Fig. 3. Solid lines: length extension model; dashed lines: surface growth model. 

zones continues to increase at the pre-shift rate, is shorter with A(r) the 
dimension under active control than with L(r), and one would expect La to 
be greater than LL, which it is, at least in the immediate response version. 
The moderating influence introduced by the (Y’ version affects Lr less than it 
does L,4 because the former, being under active control, is affected directly 
whereas the latter changes through its dependence on A(t), which is greater 
than linear. Thus LA drops below its level in the a version by much more 
than LL does and, at any particular time, is actually less than the cor- 
responding value of LL. 

The difference in the behavior of E(t) and R(t) is striking: E(f) undergoes 
a large overshoot and approaches its steady-state value from above, R(t) 
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remains almost constant (cu’ version) or even decreases somewhat ((Y 
version) before increasing monotonically towards its asymptotic level. 

Both dimensions take a considerable period of time to reach steady state. 
This should not be too surprising, perhaps, when one realizes that N(t) 
continues to increase according to 2”‘l until C + D min after the shift-up, so 
that only then can the dimensions begin their approach to steady state, a 
process of rearrangement that requires several generations because of the 
need to dilute out the excess length (or surface area) accumulated during the 
overshoot phase and the effect of the delay in protein production following 
shift-up. (This latter is responsible for the maximum overshoot occurring 
slightly beyond t = C +D.)- 

9.50 I I I 

r,= 72 min 
8.75 TV= 24 min Gradual 

8.00 - 

7.25- 

6.50- 

4.25- 

3.50- 

2.75- 

2.001 I 
0 30 60 90 120 I50 180 210 240 

Time f (min) 

FIG. 7. Mean aspect ratio f(t) as a function of time t following shift-up from 7, = 72 min to 
7,. = 24 min, for the same combinations of (C +D), dL, dA as in Fig. 1. Gradual response 
version. Solid lines: length extension model; dashed lines: surface growth model. 
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In the immediate response version, both RL and RA start to decrease right 
after the shift-up (the latter more rapidly) and remain below their pre-shift 
level for at least one hour; in the gradual response version, both increase 
from the beginning (albeit slowly at first) and continue to increase 
throughout the transition period. It should thus not be too difficult in 
practice to choose between the two, even without specifying the model. 
Choosing between the models is not as easy, and our ability to do so will 
depend in large measure on the magnitude of the predicted difference 
between them. Unfortunately, as we shall see in the following article 
(Woldringh et al., 1980), the experimental results favor the version with the 

C+D=380,2min 
dL=17.1min 

d,, =49,3min Gradual 
response 

fL 

0 30 60 90 120 150 180 210 240 
Time f (min) 

FIG. 8. Mean aspect ratio f(r) as a function of time t following shift-up with (C + D) = 
80.2*0.2 min, dL = 17.1 min and dA = 49.3 min, for the various combinations of q and r2 
indicated (in min). Gradualresponse version. Solid lines: length extension model; dashed lines: 
surface growth model. 
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smaller difference, the cy’ version. In an attempt to enhance this difference, 
we turn to a dimensionless measure of cell geometry, the aspect ration f(t), 
defined (Zaritsky, 1975; Krasnow, 1978) asE(t)/2Z?(t), so thatf= = LL/2R, 
and fA = La/2Ra. Figure 7 is a plot of this ratio as a function of time after 
shift-up using the data of Fig. 2 and Fig. 5. The separation between 
corresponding curves is indeed larger in the case of f(t) than for either of the 
original dimensions. (The aspect ratio possesses the added advantage of 
being independent of the absolute calibration of the experimental data.) 
Figure 8 illustrates the effect on this separation of various combinations of 71 
and 72. These figures suggest that in a properly designed and carefully 
executed experiment, one could hope to be able to decide unequivocally 
between the contending models. 

It should be pointed out that there is a fundamental difference between 
the two models as regards steady-state mean length: I is a sensitive 
function of C +D in the surface growth model but is completely indepen- 
dent of C +D in the length extension model. Thus experiments designed 
(Zaritsky & Pritchard, 1973; Lane & Denhardt, 1975) to alter C could 
afford an independent test of the models provided D and d remain 
unchanged. Such measurements are now in progress and will be reported 
upon in a subsequent publication. 

The authors wish to express their sincere thanks to an anonymous reviewer of this 
journal for his critical and thorough reading of this manuscript. 
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APPENDIX 

In order to develop an expression for total cell length based on the behavior 
of individual cells, we assume that C +D, d, 71 and r2 are not only 
independent of time, as before, but also that they are the same for all cells. In 
addition, we require that division give rise to two identical daughter cells 
and, perhaps most unrealistic of all, that cell mass respond to the new growth 
rate immediately rather than as found by Bremer & Dennis (1975). Since the 
approach presented here is meant to be of heuristic value only, such gross 
over-simplification need not be of too much concern; a less restrictive (and 
far less laborious) derivation is provided in the main Theory section of this 
article. 

For convenience we treat cases in which age at initiation of chromosome 
replication a,, precedes age at doubling q-d, separately from those in 
which a0 follows 71 -d. The cells in each case are divided into three age 
groups: 

Osa iao, aOsasrl--d, rl-dsa~~l foraosT1-d 

O%asT1-d, Tl-dsasao, aosaa~, foraozT1-d. 

Consider first the group a z a05 7 i - d, and let p( 2 1) represent the 
integer (C + D + ao)/ri. Then the time f, at which doubling m takes place 
depends on p. For 

~=1,t~=(ao-a)y+c,fZ=f,+~2,...,fm=t~+(~-1)T*; 
for 

P=2.t~=T,-d-U,f~=(U"-U)y+C,t~=t~+T~,...,fm=f~+(~-2)T~; 

and, in general, 

ti =T,-d-U, tz=tl+71,. . ., t,-,=tl+(p-2)71, 

f,=(Uo-U)y+C, fp+l=fp+T2,..., t,,,=fp+(F?l-P)T2; 

where Y=T~/T ,  andc=C+D-d. 
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The rate at which a cell extends is a function of r, the time since the 
shift-up, and a, the age of the cell at t = 0. It is possible to choose a series of 
time intervals in such a way that this rate alternates between doubling once 
for each cell and being completely independent of a; the actual sequence 
depends on p : 

Sequence Time interval Rate of extension 

lst, for p 2 2 OItI71-d-Uo 
rl-d-a,,stIrl--d 

2nd, for p 2 3 T,-dsts2rI-d-ao 

Pth (p-l)T1-dst 
spr,-d-ao=c 

cltlc+yao 

(p+l+n)th c+yu,+n7~stIc 
+(n + 1)Q 

c+(n+1)725tIC 
+ (n + 1)72 + y&J 

a for all cells 
doublesat t=r,-d-a 
2a for all cells 

2’-‘(u for all cells 
doubles at t = c + y(aO - a) 

2P+n~ for all cells 

doubles at 
t=c+y(ao-a)+(n+1)7* 

When we combine all three groups of cells in the case a0 I r1 - d, the time 
intervals can be redefined so that within each interval the rate of extension 
doubles once, either for all cells with a I 71- d or for all cells with a 2 r1 - d, 
but not both: 

Sequence Interval Rate for a srl-d Ratefor arr,-d 

lst, Ostsrl-d doubles at t = 71 -d-a 2a for all cells 
forpz-2 r,-dstsrl 2a for all cells doubles at 

t=2r1-d-a 
2nd, r,sts2r,-d doubles at 4ff for all cells 

forpz3 t=2r,-d-a 

Pth (p - 1)~~ I t I c + yao doubles at 
t=c-(a-ao) 
for a 2 a, and at 
t=c+y(ao-a) 
for a5ao 

c+ya,Itsc 2’~ for all cells 
+ybo+d) 

. . . 
(p+l+n)th c+y(ao+d)+m2st doublesat 

Ic+yuo+(n+l)T* t=c+y(ao-a) 
+ (n + l)T2 

c+yao+(n+1)721t 2P+“+1forallcells 
sc+y(ao+d) 
+ (n + l)Q 

2’a for all cells 

doubles at 
t=c+y(uo-a)+72 

2p+“+‘a for all cells 

doubles at 
t=c+y(ao-a) 
+ (n + 2)7* 
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We can now calculate the total length at any time L(t) by summing the 
contributions of all the cells. Again for the case a0 % r1 - d, 

a1 
L(t) = L(0) + 

I 
m(u) da + 

0 I 

7’ 
atlv(a) da + 2a(t-t&+z)du 

a1 

+ rT1 2crtv(u) da forO5tSr’ 
17’ 

and 
T’ 02 

L(t) = L(7’) + I 2a(t-r’)v(u)du+ I 2a(t - +(a) da 
0 2’ 

71 Tl + I 2a(tz-$)~(a) da + I 4a(t - t&(u) da for 7’ 5 r 5 TV, 
(12 a2 

where 7’ = 71 - d, ui = iri - d - t, and v(u) is the number of cells at age a at 
t = 0 and is given by the product of N(O), the total number of cells at t = 0, 
and (2/7-i) (In 2)2-“” I, the frequency function of age (Powell, 1956). In 
general, for any closed interval t- I t 5 t,, 

% 
L( !) = L(t-) + 2’-‘a(t - t-)~(a) da + 2’-‘(Y(fi - Z-)~(a) da 

7’ 71 + I 2i~(t-ti)~(a) da + I 2’(u(t - t-)~(a) da 
a, T’ 

or 
7’ 

L(r) = L(fL) + I 2’%(t- t-)~(a) da + 
0 I 

% 
2’-‘(~(t - t&(u) da 

7’ 

I 

71 71 

+ 
2’-‘a(fi-r-)V(U) da + 

I 
2’a(t-r~)v(u) da, 

a, G 

depending on which cells double their rate within that period. Here ti = 
zkl - d - a and i = [(t- + d)/T1] + 1. The results are surprisingly simple, and 
the same for both cases (a0 5 r1 -d and a0 2 71 - d): 

fortIc 

_ UC) + 2”/‘1 FpC’/’ 
L(O) 

[ ‘-11 for tLc. 


