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� Maximum phage titers calculated.
� Calculations carried out by a novel hybrid model.
� T4 phage/Escherichia coli host system used as test case.
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a b s t r a c t

A hybrid mathematical model was devised to obtain optimal values for bacterial doubling time and
initial phage/bacteria multiplicity of infection for the purpose of reaching the highest possible phage
titers in steady-state exponentially growing cultures. The computational model consists of an initial
probabilistic stage, followed by a second one processed by a system of delayed differential equations. The
model’s approach can be used in any phage/bacteria system for which the relevant parameters have
been measured. Results of a specific case, based on the detailed, known information about the
interactions between virulent T4 phage and its host bacterium Escherichia coli, display a range of
possible such values along a highlighted strip of parameter values in the relevant parameter plane. In
addition, times to achieve these maxima and gains in phage concentrations are evaluated.

& 2014 Published by Elsevier Ltd.

1. Introduction

Bacteriophages were discovered a century ago (Twort, 1915;
Duckworth, 1976). The idea that they could be exploited as a
means to get rid of damaging bacteria was introduced but was
abandoned almost completely soon afterwards due to various
reasons (reviewed in Adams, 1959). The appearance and fast
spread of drug resistant pathogenic bacteria revived the so-
called Phage Therapy arena (Thiel, 2004; Sulakvelidze and
Pasternack, 2010; Barr et al., 2013), which has been maintained
only in a small number of laboratories in Georgia and Poland
during the decades of temporary reduced interest in the subject
(Parfitt, 2005; Miedzybrodzki et al., 2012; Gorski et al., 2009).
Nevertheless, phage biology was highly instrumental in develop-
ing Molecular Biology and Genetic Engineering in the 1940s–1960s
(Cairns et al., 1966).

Various methods have been devised to obtain high titers of phage
suspensions when large quantities/high concentrations of phage are
needed (Su et al., 1998); extensively reviewed and described in
Carlson and Miller (2004). To meet this end, a steady-state growing
bacterial culture (Fishov et al., 1995) is infected and the crop of phage
is harvested after a certain period (e.g., Hadas et al., 1997). The
experiments are designed so that the final phage titer is as high as
possible. To achieve this goal, the required doubling time of the
culture τ, and the phage multiplication parameters have hitherto
been estimated and considered usually just ‘by eye’.

Levin and coworkers (see e.g., Levin et al., 1977) were the first to
analytically examine a system of coexisting bacteria and bacterioph-
age. The latest reports describe phage multiplication under exceed-
ingly slow host’s growth rates (Golec et al., 2014) and stochasticity of
adsorption rates (Galet et al., 2012) or lysis time (Dennehy andWang,
2011) of certain mutants, but to the best of our knowledge none has
been concerned with the question posed here: what growth condi-
tions would bring about highest titers in wild-type strains.

Recent deciphering of the relationships between τ and the
latent period L (time after infection to the consequent phage burst
by cell lysis) and the burst size β (the number of new phage
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appearing after lysis of a single bacterium) in the T4/Escherichia
coli system (Rabinovitch et al., 1999, 2002) allows the derivation of
a simple computational model as a reasonable first approximation
allowing an experimental control of this yield.

To evaluate the optimal conditions that can achieve this phage
maximum, a hybrid mathematical model of the phage population
growth was developed here, consisting of two time stages. The
first is based on probabilistic arguments, in preparation of the
second stage involving delayed differential equations (DDE), in
which the lysing latent period L for bacteria implies delay. The
reason for combining these two methods is that the entire process
is normally of short duration, never exceeding two or three latent
periods, and without achieving a steady type of dynamics. The first
L period is treated probabilistically in order to provide a “history”
for the DDE system of equations in the second stage, if needed. The
detailed description is given below.

2. Method: The hybrid model

As implied in the Introduction, a lytic phage growth procedure
is usually realized in a laboratory by bringing bacteria and
bacteriophage into interactive contact during a relatively short
period of time, while the bacteria need not compete with each
other for the provided nutrient. The process is not expected to
attain persistent dynamics, its termination being externally con-
trolled by the phage population reaching a maximum.

In order to investigate this process we chose here a hybrid
mathematical model, constituted of two time periods, describing
the process during which phage infect bacteria, and new phage are
produced by bacterial delayed lysis occurring at a finite latent
period of time L after infection. The model is set up as follows: the
occurrences during the delay between the first infection and the
first lysis are treated probabilistically since this “history” is not
known ab initio. This is denoted as the ‘first phase’. If, however, the
process does continue beyond this time, which, as shown subse-
quently, will be the case when the bacteria doubling time is
significantly longer than L, the ‘second phase’ of the process is treated
by a relatively simple system of two delayed differential equations
(DDE) of the prey/predator type in which the historical values are
provided by the probabilistic initiating phase. For simplicity, it is also
assumed that L is constant, that all bacteria are equally susceptible to
be infected, and all phage are equally able to infect.

The DDEs are presented here first, followed by the description
of the probabilistic phase.

2.1. DDE

The model includes two non-linear delay differential equations
(DDE), as follows:

dN tð Þ
dt

¼ μN tð Þ�γN tð ÞV tð Þ
dV tð Þ
dt

¼ �γV tð ÞðN tð ÞþβγN t�Lð ÞV t�Lð Þ ð1Þ

where N and V [ml�1] are the concentrations of free (susceptible)
bacteria, and infecting phage, respectively; t is the time [min];
τ½min� ¼ lnð2=μÞ is the doubling time of the phage free bacteria
where μ [min�1] is the exponential growth rate; γ [ml cell�1min�1]
is the adsorption rate of phage onto susceptible bacteria; L [min] is
the latent period of time between infection and lysing; β is the
number of phage (burst size) released into the system at time t by
the lysis of a bacterium infected at time t�L. It was shown
(Rabinovitch et al., 2002) that in a T4/E. coli system, the parameters
L, β and γ, depend on the doubling time τ (the respective empirical
relations are given in App. 1).

The first equation describes the rate of change of the bacterial
concentration N: it increases by division and decreases by phage
infection, which is proportional to the product of the phage and
bacterial concentrations. The second equation refers to the rate of
change of the phage population V: it decreases by the immediate
infection but is more than replenished by β times the number of
infected bacteria L minutes earlier. For simplicity, the model does
not address infected bacteria explicitly: by analyzing their inclu-
sion into the model, it was found out not to make much difference.
Hence, we opted for the simple differential model, with only two
state variables: susceptible bacteria and phage. The presence of
infected bacteria is accounted for only by the lysis process.

Here, phage growth is explored for a test case of a system
of T4/E. coli in terms of two externally controllable parameters:
the doubling time τ of the bacterial culture in the range
20� 100 [min], realized by varying the nutrients, and the initial
(subscript 0) multiplicity of infection (MOI) denotedm0 ¼ V0=N0 in
the range 10�7�1 (phage cell�1). The main purpose of the work is
to find the maximal yield of the phage, and the conditions to
achieve this maximum. In addition, results provide the time Tf
when this maximum occurs and the virus gain G, the ratio Vmax=V0

between the final and initial virus concentrations.
The system in Eq. (1) is infinite dimensional in the sense that a

continuum of values of the variables N and V in the (delay) time
interval [t–L, t] preceding t are required in order to specify their
condition at t. For the numerical solution of the 2D system
Eq. (1) the continuum is approximated by embedding into this
range an ordered finite number of values of the variables, effectively
transforming the differential system into a multi-dimensional
iterated map: divide the time range L into a sufficiently large
number j of small intervals Δt such that L¼ jΔt (see e.g. Sprott,
2003). A standard Runge–Kutta 2 (RK2) (Sprott, 2003) algorithm
written for MATLAB, was used here for the numerical solution of
the 2þ j variables of the ensuing map.

The initial (at t¼0) bacteria concentration here is fixed at
N0 ¼ 109 [cell ml�1], while V0 will be determined by one of the
initial MOIs in consideration: m0 ¼ 10k; where k¼�7, �6, �5,…,
0. Now, in order to complete the information needed for running
the time series RK2 algorithm, one has to set up the historical
values of N and V at the j time steps after t¼0 prior to the first lysis
at t ¼ L. This is an important step in the context, for the entire time
evolution of the system is expected to be short lived, as explained
above, the interesting dynamics never attaining here a long term,
persistent, finite, non-trivial attractor which has managed to
“forget” the transient initial history. However, these vital initial
quantities cannot be calculated by Eq. (1). We therefore use here a
well-defined probabilistic approach for a well posed, self-contained
formulation of this period as described below.

Note that the probabilistic formulation can also be employed as
a first approximation to the whole process instead of Eq. (1), but is
applied here only between t¼0 and t¼L.

2.2. History and probabilities

The entire time axis is divided into a sequence of time intervals
of finite length L (“boxes”), indexed by the letter n. Each box is
viewed as a whole, indivisible object (time discretization). A
probability distribution function is addressed which defines the
probability ps,n that precisely s phage infect a single bacterium in
the time box n. The first time box, and the only one important in
the hybrid model, n¼0, contains at the onset a concentration of N0

bacteria and V0 phage, with m0 ¼ V0=N0. The concentration of
uninfected bacteria in this box is thus N0p0;0, which then multiplies
exponentially in the box reaching the level N1 at t¼L:

N1 ¼N0p0;0a; ð2Þ
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where a¼ expðL ln 2=τÞ is the exponential bacteria growth factor.
The number of bacteria infected by one or more phage is,
obviously, N0ð1�p0;0Þ. Thus, the phage concentration in this box
(at time L) is given by

V1 ¼N0 1�p0;0
� �

β�sð Þ ð3Þ
where s is the mean number of the infecting phage per bacterium
in the box. The probabilistic approximate process may then be
advanced along the box chain by iterating these steps in box n¼1,
with N1, V1 and m1, and so on:

Nnþ1 ¼Nnp0;na

Vnþ1 ¼Nn 1�p0;n
� �

β�sð Þ

mn ¼
Vn

Nn
ð4Þ

As mentioned previously, this procedure presents a direct first
approximation for the complete process, namely for the final
numbers of N, and V. However, for the more accurate hybrid
model treated here, only the first box n¼0 needs to be addressed
for setting up the initial history before t¼L. In view of the
essentially exponential nature of the variation of N and V, it is
most convenient to set the j�1 embedded values by interpolating
linearly between log N0 and log N1, as well as between log V0 and
log V1.

It is assumed that the bacteria are indistinguishable among
themselves, the same being true for the phage. Then if V ;N-1 so
that their average ratio tends to m¼ V=N¼ const:, the probability
that any given bacterium was infected by precisely s phage is the
geometric (Feller, 1968; Pitman, 1993) distribution:

ps ¼
ms

1þmð Þsþ1 ð5Þ

yielding p0 ¼ 1=ð1þmÞ.
Note that if, in addition, m is sufficiently small, ps may be

approximated by the Poisson distribution:

ps ¼
ms

s!
e�m ð6Þ

where p0 ¼ expð�mÞ. The mean is s¼m for both distributions.
Note also that the value of m changes from box to box.

3. Results

Fig. 1 shows a typical time series for N (t), V (t), m (t) produced
by the hybrid model combining the probabilistic history with the
DDE Eq. (1), with τ¼30, and the initial state values N0¼109,
V0¼3.2�105, m0¼3.2�10�4. According to Rabinovitch et al.
(1999, 2002), the burst size and lysis period are: β¼128, L¼28
[min] and γ ¼ 2� 10�8 [ml cell�1 min�1]. The Vmax output in this

case is Vmax ¼ 1:3� 1012 [cell ml�1], attained at time Tf¼60 [min].
The final gain here is: G¼ Vmax=V0 � 4� 106. Some features are
noticeable: After the probabilistic history has been built up till
t¼L, the phage concentration increases at the expense of bacteria.
When m (t) becomes of the order of 1–10, the susceptible bacteria
concentration “formally” drops sharply by �15 orders of magni-
tude, while, for another time interval of about L minutes, phage
production continues, originating from the bacteria infected dur-
ing their last latent period. The system now contains only infected
bacteria which are not addressed explicitly in this model, render-
ing the “lysing from without” practically irrelevant. According to
our relatively simplistic model, susceptible free bacteria have
formally disappeared at this point of time. Bearing in mind that
infected bacteria are not directly accounted for in the model
equations, and that the model does not provide a mechanism of
self-destruction of phage, the derivative _VðtÞ in Eq. (1) also
“formally” vanishes after attaining Tf (Fig. 1). It should be under-
stood that the sharp drop of N accompanied by the surge of m, by
some 15 orders of magnitude respectively, are both computational
artifacts, lacking any physical significance.

Table 1 contains the relevant results of this study, including, in
each table case, the values of the following four quantities, in this
order:

Maximum phage yield: Vmax in units of 1011 ml�1,
Growth duration to Vmax: Tf [min],
Lysis time delay: L [min],
Decimal logarithm of the gain: logG¼ log(Vmax/V0).

Data contained in grey shaded cases were obtained with only
the probabilistic formulation, Eqs. (2)–(4). On the other hand,
cases with white background, including the heavy lined contour
and gold shading were computed with the complete hybrid model.
The reason for this is that the large initial m0 in the grey shaded
cases causes V(t) to catch up rapidly with N(t), increasing rapidly
past the value of 1 before the completion of the first lysing, and
making the use of the DDE’s unnecessary in these cases.

The most relevant feature of this study is reflected in the six
cases of the table, highlighted by the heavy lined contour. They
contain several highest maxima of Vmax, as Fig. 2a clearly shows. It
represents in 3 dimensions the surface Vmax as a function of τ and

Fig. 1. A typical time series, produced with τ¼30 min., and m0¼3.2�10�4.

Table 1
Results for the T4/E. coli system (Explanations in text).
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logm0, showing a chain of “mountain peaks”. Beyond this ridge lie
the grey cases.

The range of highest Vmax for N0¼109 is between 3 and 4�1013

occurring for τ and m0 pairs of: (20, 10�3); (30, 10�2) and
(50, 10�1), while different values of τ or m0 lead to lower maxima.
The precisely computed highest peak, Vmax¼4:25� 1013, is located
at m0¼0.8, and τ¼48, see also Fig. 2b.

Fig. 3 represents a projection of the final time to maximum on
the ðτ; logm0Þ plane, and Fig. 4 shows the gain, log G, as a function
of τ and log m0 indicating that for sufficiently low values of m0 the
gain is almost independent of the doubling time τ.

4. Discussion

A hybrid mathematical model was used to obtain optimal
combinations of bacterial doubling time τ and multiplicity of
phage infection m0 to achieve highest yields of viruses. Results

show rather sharp peaks around three pairs of these values [(20,
10�3); (30, 10�2) and (50, 10�1)]. The pair (48, 0.8) that yields
the maximum phage concentration, Vmax¼4:25� 1013, is surpris-
ing because faster growth conditions are generally exploited
for this purpose and it accentuates the importance of the present
calculations.

Under faster bacterial growth conditions (shorter τ’s), cells are
larger than at poorer media (e.g., Zaritsky et al., 1979) and reach the
stationary phase at cell concentrations significantly lower than the
109 ml�1 taken here as N0 for all media. And since slower growing
cells, such as during the stationary phase, produce less phage progeny
(according to the equations displayed in the Appendix, derived in
(Rabinovitch et al., 2002), the real Vmax will be smaller than the values
derived here which assume constant, optimal conditions all through
growth up to the high concentration of 109 ml�1. Refining our model
would thus be possible only when the exact changes in instantaneous
τ during the growth curve are known. On the other hand, even when
this knowledge is gained, cell lysis L minutes after infection compli-
cates matters further because it results in pouring into the growth
medium of the remaining live cells breakdown materials thus
enhancing their growth rate.

The phenomenon of lysis inhibition (LIN), which can signifi-
cantly raise phage yield (Bode, 1967), was also not considered here
due to lack of solid, parametric relationships: lysis of phage-
infected bacterial generally exploited for this purpose. Doubling
time of about 48 min are achieved in E. coli at defined salt solution
medium with glucose as the sole carbon source, which is more
tedious to prepare than rich, undefined media such as LB. No
previous articles are known to us that have addressed this
problem in other phage/host systems. To apply a similar computa-
tional model, the values of these parameters as functions of τ
should first be measured. Experiments are evidently required to
test these results and to enhance them to treat different phage-
bacteria couples. It is assumed here that, once τ is determined, all
these parameters remain constant. Otherwise, all the parameters’
experimental values need to be separately obtained.

As mentioned in Section 2, the model does not address infected
bacteria explicitly. Also of lesser importance was estimated to be
the effect of immunity towards infection of a small set of the
bacterial population. All these, and other secondary effects may be
taken into consideration in a more elaborate study.

Several issues related to the results obtained here are in order:
The absolute values of the results in real life would obviously

depend on various parameters that were not considered here. For
example, under faster bacterial growth conditions (shorter τ’s) LIN
will likely operate due to the spread of L in the infected population
provided the MOI is larger than 1 but smaller than the value
causing “Virion-Mediated” lysis-from-without (Abedon, 2011).

Fig. 2. (a) Vmax surface. (Color bar for Vmax) (b) projection of the Vmax surface on the
(logm0, τ) plane. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 3. Projection of the surface Tf ðτ; log m0Þ [min]. (Color bar for Tf.). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 4. The surface log Gðτ; log m0Þ. (Color bar of logG). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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Long term effects were not addressed here since the whole
process discussed is short and these effects are unlikely to appear
during this period.

The analysis performed here does not consider temperate
bacteriophage, which can lysogenize their bacterial hosts. The
question of how are these anticipated to behave, and what method
should be used in order to maximize their yield upon induction,
remains moot. Still, defining the time during culture growth at
which artificial induction is initiated to reach high titers, will no
doubt benefit from the outcome of our analysis. In one sense,
imposing induction by a physical or chemical agent is even better
regulated because it affects the whole population simultaneously,
whereas infection (particularly at low MOI) is much less synchro-
nized (and see stochasticity in lysis time by Dennehy and Wang
(2011), Galet et al. (2012).

Other methods to maximize phage yield that have been
attempted are cumbersome and may not be reproducible. For
example, the use of soft agar layer on agar plate (Swanstrom and
Adams, 1951), which results in up to 1012 ml�1 T4r phage, can be
exploited with our rigorous analysis for raising the yield further.
Similarly, the final yields may be concentrated by sedimentation in
the presence of polyethylene glycol (Yamamoto and Alberts, 1970).
The rigorous analysis described here can be exploited to simplify
these other methods.

5. Conclusions

Maximum titers can appear at several parameter values which
are not obvious under a first glance. Usually labs carrying out such
experiments apply a trial and error approach to find the best
values. A simple calculation along the lines of the present model
can reduce the searching time. Thus, if the bacteria doubling time,
the adsorption rate, the latent period and the burst size of a
system are known, a procedure based on Eqs. (1)–(4) can be
carried out and the values of the highest titers calculated. Of
course, as in the case of E. coly/T4 system, if some other parameter
values depend on the doubling time, final evaluation would
become easier, being dependent only on two parameters, τ and
the MOI. Note that a first approximation to the maximum titer can
be derived from the probabilistic approach (Eqs. (2)–(4)) contin-
ued for the additional time boxes, as discussed following Eq. (4).

Appendix

The formulae for L, β and γ as functions of τ used in the present
work, were established (Rabinovitch et al., 1999, 2002) for the
bacteriophage T4 development in E. coli, as follows:

Lffi1:14τ�0:0068τ2 min½ �; ðused here in the range 20�46Þ

βffið0:25τ�0:0017τ2Þexpð92:1=τÞ; ðrange 430�20Þ

γffi5:26� 10�8expð�0:0315τÞ ml cell�1 min�1
h i

;

ðrange 2:8� 10�8�2:3� 10�7Þ:
The ranges correspond to the values of τ in increasing order.
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